
Enterprise IntegrationEnterprise Integration

and Managementand Management

Product

Feature

Deliverable

Manifestation

Physical Location Tool

Derivative

Derivative

Task AssemblySystemFunction

William T. Holmes

Library of Congress Cataloging-in-Publication Data

Holmes, William T. (date)
Enterprise Integration and Management/William T. Holmes
Includes Index.
ISBN 0-914743-02-3

1. Computer Integrated Manufacturing
2. Concurrent Engineering
3. Integrated Product Development
4. Computer-Aided Design (CAD)
5. Computer-Aided Analysis (CAA)
6. Computer-Aided Engineering (CAE)
7. Computer-Aided Systems Engineering (CASE)
8. Computer-Aided Software Engineering (CASE)
9. Computer-Aided Manufacturing (CAM)

10. Computer-Aided Logistics Support (CALS)
11. Solid Modeling
12. Process Improvement

Published by
Matrix Design Publications

P.O. Box 3336
Lennox, California 90304

Printed in the United States of America

Common Law Copyright April 1992. All rights reserved.

Copy privileges are a function of the format purchased.
Format Copy Permission Retail Price
Vello-Bind™ Not to be copied in whole or in part $30
Three-ring May be copied without modification $60
3.5" Diskette Diagrams only with credits — MacDraw II, PICT, others by request $80
General Dynamics Convair Division has unlimited copy rights.

2 3 4 5 6 7 8 9 10

ISBN 0-914743-02-3

Distributor:

Synergy Enterprises Synergy Enterprises
✽ P.O. Box 36, Escondido, Calif. 92033-0036P.O. Box 36, Escondido, Calif. 92033-0036

619-672-9836 voice and FAX 619-672-9836 voice and FAX

Enterprise IntegrationEnterprise Integration

and Managementand Management

William T. Holmes

Matrix Design Publications
P.O. Box 3336

Lennox, California 90304

Enterprise Integration and Management Contents

Contents

1. Introduction..1
2. Environment...2
2.1. Old Paradigm...2
2.1.1. Specialize..2
2.1.2. Re-Organize...2
2.1.3. Compartmentalize..3
2.1.4. Computerize the Compartments..3
2.1.5. Sacrifice Product Quality and Cost..4
2.2. New Paradigm...4
2.2.1. Trends in Politics...4
2.2.2. Trends in Business...5
2.2.3. Economy of Scale...6
2.2.4. Price..7
2.3. New Business Drivers..7
2.3.1. Willoughby Templates...9
2.3.1.1. Design Requirements..10
2.3.1.2. Trade Studies..10
2.3.1.3. Design Policy...10
2.3.1.4. Design Process...10
2.3.1.5. Design Analysis..11
2.3.1.6. Parts and Materials Selection..11
2.3.1.7. Software Design...12
2.3.1.8. Computer-Aided Design..12
2.3.1.9. Design for Testing...13
2.3.1.10. Built-In Test..13
2.3.1.11. Configuration Control...13
2.3.2. Design Review..14
2.3.2.1. Design Release...14
2.3.2.2. Logistics..15
2.3.2.3. Technical Manuals...15
2.3.3. CALS...15
2.3.3.1. Scope..16
2.3.3.2. Objectives...16
2.3.3.3. Core Requirements..16
2.3.3.3.1. Phase 1...16
2.3.3.3.2. Phase 2...16
2.3.4. Concurrent Engineering..17
2.3.5. Total Quality Management..17
2.3.6. New Business Drivers Summary...17
3. Basic Relationships..19
4. Generic Process..23
4.1. Plan and Manage Engineering..24
4.2. Define Product Requirement..25
4.3. Specify Product...25
4.4. Design Systems and Derive Components...26
4.5. Verify Systems and Components..26
4.6. Package..27

i

Enterprise Integration and Management Contents

4.7. Define Assemblies..27
4.8. Validate Assemblies...28
4.9. Plan and Manage Manufacturing..28
4.10. Define Manufacturing Process...28
4.11. Define Manufacturing Tools..28
4.12. Fabricate or Purchase Components...29
4.13. Inspect Components..29
4.14. Assemble Components and Assemblies...29
4.15. Test Assemblies..29
4.16. Plan and Manage Support..30
4.17. Define Support Process..30
4.18. Define Support Tools...30
4.19. Support Product..30
4.20. Process Implementations..31
4.21. Process Interruptions...33
4.22. Process Iterations...33
4.23. Information Hiding..34
4.24. The Goal...34
5. Information Integration...36
5.1. Management View..37
5.2. Customer View..45
5.3. Engineering View...46
5.3.1. Part Attributes (SBS)..50
5.3.2. Part Instance Attributes (SBS)..51
5.4. System and Manufacturing View...51
5.5 Manufacturing View..55
5.5.1. Part Identification..56
5.5.2. Part Attribute..57
5.5.3. Part Instance Attributes (ABS)..58
5.6. Support View...58
5.7. Data Amount and Fidelity..59
5.8. Derivative...60
5.9. Tool Used...61
5.10. Physical Location..62
5.11. Data Navigation..62
5.12. Configuration Management..63
6. Resources..64
6.1. Computing Resources...64
6.2. Tool Resources...64
6.3. Human Resources..65
6.4. Machine Resources..65
6.5. Facility Resources...65
6.6. Resource Correlation...65
6.7. Resource Evolution..66
6.8. Resource Value...66
6.8.1. Authoritarian Approach..66
6.8.2. Libertarian (Free Market) Approach..67
6.9. Computing Resources...69
6.9.1. Requirements..69

ii

Enterprise Integration and Management Contents

6.9.2. Architecture..70
6.9.3. Communications...70
6.9.3.1. Interaction Methods..72
6.9.3.1.1. Master/Slave..72
6.9.3.1.2. Client/Server..72
6.9.3.1.3. Peer-To-Peer...72
6.9.4. Network...73
6.9.4.1. Standards...73
6.9.4.1.1. Physical..74
6.9.4.1.2. Datalink...74
6.9.4.1.3. Network...75
6.9.4.1.4. Transport..75
6.9.4.1.5. Session...75
6.9.4.1.6. Presentation...75
6.9.4.1.7. Application...75
6.9.4.2. Hierarchy..75
6.9.4.2.1. Wide Area...76
6.9.4.2.2. Value Added..76
6.9.4.2.3. Regional...76
6.9.4.2.4. Local Area Network..76
6.9.4.2.4.1. Bridges, Gateways and Routers...77
6.9.4.2.4.2. Broadband, Baseband and Fiberoptic..................................78
6.9.4.2.4.3. AppleTalk LAN..79
6.9.4.2.4.3.1. Applicability..80
6.9.4.2.4.3.2. Functionality...80
6.9.4.2.4.3.3. Hardware Options...80
6.9.4.3. Cell..81
6.9.4.4. Node..82
6.9.4.5. Network Management..82
6.9.4.6. Unix Communication Services...83
6.9.4.6.1. Protocols...83
6.9.4.6.2. Services..84
6.9.4.6.3. Data Links..84
6.9.4.6.4. Programming...85
6.9.4.6.5. Callable System Routines...85
6.9.4.6.6. Network Management..85
6.9.4.6.7. Naming...85
6.9.5. Computers..86
6.9.5.1. Personal...87
6.9.5.2. Departmental...88
6.9.5.3. Enterprise...89
6.9.5.4. Operating System...90
6.9.5.4.1. Recovery...91
6.9.5.5. Utilities..91
6.9.5.5.1. Archive..91
6.9.5.5.2. Optimization...91
6.9.5.5.3. Repair..91
6.9.5.5.4. Backup..92
6.9.5.6. Security...92

iii

Enterprise Integration and Management Contents

6.9.5.6.1. Unclassified...92
6.9.5.6.2. Classified..93
6.9.5.6.3. Secret..94
6.9.5.6.7. Display Services...94
6.9.5.6.8. File Management..96
6.9.5.6.9. Data Management..97
6.9.6. Object-Oriented Data Management..99
6.9.6.1. Modeling Power..101
6.9.6.1.1 An-Instance-Of...102
6.9.6.1.2 A-Kind-Of..103
6.9.6.1.3 A-Part-Of...104
6.9.6.3. Design Evolution...105
6.9.6.3.1. Versions..105
6.9.6.3.2. Alternatives..107
6.9.6.4. Type Evolution...107
6.9.6.5. Partial Consistency...108
6.9.6.6. Performance..108
6.9.6.7. Object-Oriented...111
6.9.6.7.1. Graphics...111
6.9.6.7.2. High Level Hierarchical Image Composition.............................112
6.9.6.7.3. Integration of Vector and Raster Graphics.................................113
6.9.6.7.4. Libraries of Pre-Defined Types..114
6.9.7. Data Dictionary..115
6.9.8. Data Directory..116
6.9.9. Machines..117
6.9.10. Tools..117
6.9.10.1. Tool Integration...117
6.9.10.2. Tool Interfacing..119
6.9.10.2.1. File Transfer...119
6.9.10.2.1.1. Reformatting Utility..120
6.9.10.2.1.2. Neutral Format...120
6.9.10.2.2. Data Transfer...120
6.9.10.2.2.1. Cut-And-Paste...121
6.9.10.2.2.2. Live Links...121
6.9.10.2.2.3. Common Database Access Method......................................121
6.9.10.2.2.4. Data Format Standard...122
6.9.10.2.2.5. Common Database Management System...........................123
6.9.10.3. Tool Integration Approaches..123
6.9.10.3.1. Application Programming Interface (API)...................................123
6.9.10.3.2. Frameworks...126
6.9.10.3.2.1. Encapsulation..128
6.9.10.3.2.2. Exits...129
6.9.10.3.2.3. Full Integration...129
6.9.10.3.2.4. Advantages..131
6.9.10.3.2.5. Applied to Data Transfer To/From Subcontractors.............131
6.9.10.3.2.6. Framework...132
6.9.10.3.2.6.1. Framework Buyer Dilemma..132
6.9.10.3.2.6.2. Framework Tool Developer Dilemma.............................134
6.9.10.3.2.7. Tool Decomposition...135

iv

Enterprise Integration and Management Contents

6.9.11. Programming Languages...136
6.9.11.1. Graphics Programming..136
6.9.11.2. Object-Oriented Programming...137
6.9.11.2.1. Evolution of Object-Oriented Programming Languages.........139
6.9.11.2.1.1. C++..140
6.9.11.2.1.2. Object C..140
6.9.11.2.1.3. Smalltalk-80...140
6.9.11.2.1.4. Trellis/Owl...140
6.9.11.2.1.5. EIFFEL..141
6.9.11.2.1.6. FLAVORS and CLOS...141
6.9.11.2.1.7. ADA...141
6.10. Tool Resource...142
6.10.1. Hand Tools...146
6.10.2. Machine Tools...147
6.10.3. Fixtures...148
6.10.4. Software...148
6.10.4.1. Acquisition..148
6.10.4.2. Development...149
6.10.4.3. Data Management..150
6.10.4.4. Migration Aids..150
6.10.4.5. Class Definition...150
6.10.4.6. Mathematical...150
6.10.4.7. General Use...151
6.10.4.7.1. Word Processor...151
6.10.4.7.2. Presentation Graphics...151
6.10.4.7.3. Spreadsheet..151
6.10.4.7.4. Electronic Mail...151
6.10.4.7.5. Voice Mail...152
6.10.4.7.6. Desk Management...152
6.10.4.7.7. Project Management..152
6.10.4.7.8. Custom Data Management and Decision Support..................152
6.10.4.7.9. Graphic Feedback..153
6.10.4.7.10. Process Manager..153
6.10.4.7.10.18. Process Manager..157
6.10.4.7.11. Work Broker...158
6.10.4.7.12. Product Data Manager...160
6.10.4.7.12.1. Change Control...160
6.10.4.7.12.2. Configuration Management..161
6.10.4.7.13. Graphical Browser..163
6.10.4.7.14. Resource Manager...164
6.10.4.8. Special Purpose...164
6.10.4.8.1. Requirements Definition/Allocation...165
6.10.4.8.2. Materials Selection...165
6.10.4.8.3. Part Selection..167
6.10.4.8.4. Software Design, Validation and Manufacturing Tools...........169
6.10.4.8.5. Electrical and Electronic Design, Validation and

Manufacturing Tools...169
6.10.4.8.6. Structural and Mechanical Design, Validation and

Manufacturing Tools...171

v

Enterprise Integration and Management Contents

6.10.4.8.6.1. Master Dimensions...171
6.10.4.8.6.2. Parametric Design Tool...172
6.10.4.8.6.3. Solid Modeling Tool...173
6.10.4.8.6.3.1. Modeler Types...173
6.10.4.8.6.3.2. Construction, Representation and Display....................175
6.10.4.8.6.3.2.1. Construction...176
6.10.4.8.6.3.2.2. Representation..176
6.10.4.8.6.3.2.3. Display..180
6.10.4.8.6.3.2.4. Three Representations Are Required.......................180
6.10.4.8.6.3.3. Features, Parts, Assemblies and Their Attributes.........180
6.10.4.8.6.3.3.1. Fabrication Features..181
6.10.4.8.6.3.3.2. Assembly Features...184
6.10.4.8.6.3.4. Feature Design Versus Feature Recognition................184
6.10.4.8.6.3.5. Standard Tools Interface for Solid Modelers.................185
6.10.4.8.6.4. Assembly Tool...186
6.10.4.8.6.5. Composites Design Tool...189
6.10.4.8.6.6. Flat Pattern Design Tool..189
6.10.4.8.6.7. Arrangement Tool...189
6.10.4.8.6.8. Automatic Interference Checking Tool..................................191
6.10.4.8.6.9. Tolerance Analysis Tool..191
6.10.4.8.6.10. Tolerance Reality Check Tool..191
6.10.4.8.6.11. Assembly Simulation...192
6.10.4.8.6.12. Design Validation...192
6.10.4.8.6.12.1 Design Rules Checking Tool..194
6.10.4.8.6.12.2. Validation Selection Tool..196
6.10.4.8.6.12.3. Mass (Volume) Properties Analysis Tool.......................197
6.10.4.8.6.12.4. Mesh Generation Tool...197
6.10.4.8.6.12.5. Static and Dynamic Structural Validation Tool.............197
6.10.4.8.6.12.6. Mechanics Validation Tool..197
6.10.4.8.6.12.7. Thermodynamics Validation Tool....................................198
6.10.4.8.6.12.8. Aerodynamics Validation Tool...198
6.10.4.8.6.12.9. Stability Validation Tool...199
6.10.4.8.6.12.10. Signature Validation Tool...199
6.10.4.8.6.12.11. Reliability Validation Tool..199
6.10.4.8.6.12.12. Producibility...200
6.10.4.8.6.12.13. Maintainability...200
6.10.4.8.6.13. Design Documentation Tool...201
6.10.4.8.6.14. Manufacturing Preparation Tools..202
6.10.4.8.6.14.1. Manufacturing Process Planning Tools..........................202
6.10.4.8.6.14.1.1. Variant Process Planning Tool...................................202
6.10.4.8.6.14.1.2. Generative Process Planning Tool............................202
6.10.4.8.6.14.1.3. Parts Nesting Tool..205
6.10.4.8.6.14.2. Manufacturing Tool Design Tools....................................205
6.10.4.8.6.14.2.1. Tool Design Tool...205
6.10.4.8.6.14.2.2. Generative Tool Design Tool......................................206
6.10.4.8.6.14.2.3. Fixture Design Tool..206
6.10.4.8.6.14.2.4. Generative Fixture Design Tool.................................206
6.10.4.8.6.14.2.5. Mold Design Tool..207
6.10.4.8.6.14.2.6. Generative Mold Design Tool.....................................207

vi

Enterprise Integration and Management Contents

6.10.4.8.6.14.3. Machine Programming Tools...207
6.10.4.8.6.14.3.1. Machine Programming Tool.......................................207
6.10.4.8.6.14.3.2. Machine Program Verification....................................209
6.10.4.8.6.14.3.3. Generative Machine Control.......................................209
6.11. Human Resources..211
6.11.1. Manage Less...211
6.11.2. Un-Organize..213
6.11.3. Toss the Time Clock...215
6.11.4. Flatten and Divide...215
6.11.5. Reallocate..215
6.11.6. Privatize..216
6.11.7. Communicate..218
6.11.8. Disperse...218
6.11.9. Start...219
6.11.10. Change...219
6.12. Machine Resources..220
6.13. Facility Resources...222
6.13.1. Air Conditioning..222
6.13.2. Lighting...222
6.13.3. Protection...222
6.13.4. Space..222
6.13.5. Stability...223
6.13.6. Supplies...223
6.13.7. Waste..223
7. INDEX...224
8. ACKNOWLEDGEMENTS..231
9. ABOUT THE AUTHOR...232

vii

Enterprise Integration and Management Introduction

1. Introduction

The accolades I received from representatives of IBM, DEC, Matra DataVision,
Prime, SDRC, the Mechanical Engineering Department, Michigan State
University and others for the "Solid Modeling Brief" motivated me to combine
the best of my related work into a useful book for enterprise integration and
management purposes. The Solid Modeling Brief is but a small portion of this
work.

This book is intended to help business be as efficient and responsive as they
can be with the tools available to them. No business can afford to develop and
maintain all of its tools for long, so an equally important intent is to provide a
view of the business process that illustrates to commercial tool providers the
similarity of the process, regardless of the products involved. By simplifying the
information relationships, this view of the process demonstrates that the market
for sophisticated and comprehensive enterprise integration tools justifies the
investment required to develop them.

A large system integration enterprise with complex products is the model for this
demonstration, because it represents the most difficult communication and
coordination problem. It involves nearly all engineering and manufacturing
disciplines. Its information integration and tool requirements are the most
extreme. If the needs of such an enterprise can be satisfied with an integrated
tool set, the needs of any enterprise can be satisfied with the same tool set.

Good tools are not the only ingredient for successful enterprise integration and
management. The prospective buyers of integration tool sets must change their
business process to take complete advantage of the tools. They must see the
business process as a continuous process rather than organizations performing
functions. They must view their resources as independent contributors to the
process rather than organizational possessions.

The current political and business environments are described to establish an
understanding of how American business has declined, and how it must
change to meet new challenges and capitalize on new opportunities. A generic
business process is described as a template for all of the product lines of any
business. A way to simplify the information relationships required to support an
integrated design and manufacturing enterprise is described. Then all of the
various resources (computers, tools, humans, machines and facilities) required
to conduct the business process of a modern enterprise are described in the
context of the generic business process and integrated information paradigm.

1

Enterprise Integration and Management Environment

2. Environment

Like any organism, an enterprise must either adapt to its environment or die.
Those that can adapt quickly to rapidly changing technology and markets
survive those that cannot. As products become more complicated and the
market place more dynamic, the command and control business management
paradigm has became increasingly inappropriate. The following is a view of the
dynamic business environment of the 1990s.

2.1. Old Paradigm

Businesses tend to emulate the government bureaucracy imposed on them.
They have to staff functions to promulgate government regulations as company
policy, complete government forms and collect government taxes. Defense
businesses have the additional burden of the military bureaucracy.
Consequently, American business resembles the command and control
government that resulted from the Great Depression and World War II.
Increasing product complexity significantly aggravated management problems.

2.1.1. Specialize

Before computers were readily available to automate much of the design and
analysis process, design teams had to increase in number to accommodate
more complex products. Individual engineers or clerks were dedicated to
manage the product configuration, the program schedule, the changes to the
product, the contract requirements, the subcontractor requirements, the contract
documents, etc. As the workload or scope of work grew, the individuals asked
for help. Entire organizations grew around them. As these "support"
organizations grew, the communications among them and with the core
engineering and manufacturing organizations degraded.

Forms were created to facilitate accountable communications. Individuals were
dedicated to see that the forms were completed. Others were dedicated to
ensure that they were completed correctly. Organizations were created to
control the creation of forms.

2.1.2. Re-Organize

The "Matrix management" organizational approach had people report to both a
Functional manager and a Program manager. After it failed to improve the
responsiveness of human resources to the Program managers, the Program
managers physically removed people from their functional groups (marketing,
design, analysis, purchasing, etc.), and "co-located" them. That only substituted
one communication problem (product team communication) for another
(communication within a discipline), and aggravated the overhead rate by
changing facilities and moving as much as one-half of the human resources
annually as Program resource demands changed. Many key personnel had
two or more desks, because their experience was desired by more than one

2

Enterprise Integration and Management Environment

Program manager. The "lessons learned" by members of a discipline were
confined to a Program and seldom benefitted other members of that discipline
and the Programs to which they were assigned. The analysis tools and
procedures that were once refined within functions were re-invented for each
Program. Software written for a Program was not architected to be useful on
subsequent Programs.

2.1.3. Compartmentalize

Each new subdivision of responsibilities and tasks spawned new controls.
More individuals were dedicated to drawing vaults, change control boards and
task implementation boards. Whole organizations like Quality Assurance (QA)
and Integrated Logistics Support (ILS) were established to convince the military
that a defense contractor was serious about resolving production and design
quality problems, but such organizations only added more layers to the
bureaucracy. The fundamental communication, coordination and product
design problems remained.

This was the legacy inherited from World War II by the next generation of
managers. With computers at their disposal, but little in the way of
communications, they employed computers to speed the work of support
organizations like accounting and payroll. Engineers belatedly replaced their
slide rules with computers for analysis purposes. Each department managed
"their" data and printed reports for their internal (downstream) customers.

2.1.4. Computerize the Compartments

Even when computer security and data management capabilities allowed
originators and users of the data to access and update the information without
jeopardizing it, the support fiefdoms persisted. They insisted that the job they
performed was too complicated, specialized or troublesome for engineers to do
themselves. The time required for engineers to communicate their purchasing
needs or configuration changes to the support organizations with forms was
more than time required for engineers themselves to complete a purchase order
or change a configuration on-line.

This was a grand mistake. It reinforced organizational fiefdoms and delayed the
effective use of computers for integration by industry for twenty years. Had
these computer systems been made accessible throughout the company, their
cryptic, department-specific user interfaces would not have been tolerated.
Company practices would have been questioned and simplified. The degree of
integration and information sharing we strive for today would have been
achieved long ago.

Now the peripheral functions do little more than update their various parochial
computer systems in a vain attempt to make "their" data match the reality of
engineering and manufacturing process. These systems are generally only
paper tracking systems. They contain no data that is not also on some paper
form. In addition, they contain form numbers, revision letters and dates to

3

Enterprise Integration and Management Environment

facilitate synchronization with other forms. This is redundant data in a computer
system.

Although many of these systems include "edit checks" that preclude the entry of
nonsense data, support organizations do not have engineers perform the data
entry directly. Instead, the engineers complete forms that tell clerks what to
input to the computer, doubling the work and overhead cost and increasing
schedule.

2.1.5. Sacrifice Product Quality and Cost for Schedule

Engineers have always known that they should concern themselves with the
reliability, producibility and maintainability of their designs as well as their
performance. Unfortunately, the bureaucracy was unresponsive to the
schedule demands of Program managers, so something had to give. That
something was product quality and producibility. The attitude was "We'll fix that
later if we survive our more immediate problems." Consequently, bad designs
were dumped on manufacturing. Manufacturing either returned them to
Engineering with a change request, or employed exotic manufacturing
technology to avoid the cost of a design change or avoid extending the
schedule.

2.2. New Paradigm

The trends we see in government have direct parallels in business. We are
witnessing the demise of authoritarian regimes and authoritarian businesses.
Individuals and businesses are being liberated from government regulation.
Individuals are being liberated from nonsense business procedures.

2.2.1. Trends in Politics

With all of their power to control personal and economic freedom, the
authoritarian regimes are disintegrating. The long queues for some products
and the warehouses full of unwanted products attest to the impracticality of
centralized planning and the wonder of the free market. There are just too
many variables involved in the process of supplying viable products to
consumers.

Draught can quickly render a five-year production plan obsolete. Slogans do
not motivate business or workers for long. Privilege (guaranteed market, good
housing, seats at the ballet) is a poor substitute for profit motive. Despite good
intentions, the authoritarian regimes have wreaked economic and
environmental havoc on their countries.

The fundamental assumption underlying the authoritarian paradigm is imperfect
man. Authoritarians assume that humans are fundamentally stupid or corrupt. If
left to their own self-serving devices, they are at best inefficient and at worst self-
destructive. A few intelligent men must contrive laws to control the behavior of
these individuals for their own good or the "common good." If there is a

4

Enterprise Integration and Management Environment

problem, it must be caused by too much freedom or the abuse of it. This
assumption underlies the actions of all authoritarians, be they fascists,
communists or socialists.

The world is reverting to the libertarian paradigm that was prominent in the
United States of America in the 17th and 18 th centuries. The fundamental
assumption underlying that paradigm was perfect freedom (Howard Freeman):
humans are fundamentally intelligent and good. If left to act in their own
interest, they will directly and indirectly benefit their fellow man. If there is a
problem, search for an existing law that restricts freedom. Eliminate the
restriction and the problem will be eliminated.

2.2.2. Trends in Business

Despite all of their lobbying power to use government to restrict competition with
licenses, regulations and import/export duties, authoritarian businesses are
failing. They cannot deliver the products that are in demand. They have
warehouses full of unwanted products. There are just too many resources and
variables to manage.

Innovative competition and changing technology can render development and
production plans obsolete before their enactment. Slogans do not motivate
workers for long. Privilege (office size, parking space) is a poor substitute for
profit motive. Profit disconnected from market demand will fail to motivate the
production of the right products at the right time. Despite good intentions, the
command and control managers have invited the growth of equally destructive
labor unions. Their customers have grown dissatisfied with their products, and
they are rapidly losing market share to their more agile competitors.

The fundamental assumption of authoritarian business managers is that
employees are fundamentally unmotivated or corrupt. If left to their own self-
serving devices, they will be unproductive, or steal materials or time from the
company. A few intelligent men must contrive standard practices, control
access to supplies, tools, parts and material and install time clocks to control the
behavior of these individuals for their own good and the good of the company.
If there is a problem, it must be caused by too much freedom or the abuse of it,
so a procedure is created or modified, and a new form is created and
dispensed.

Businesses are reverting to the libertarian paradigm. Many case studies
demonstrate that paternalistic management, like paternalistic government is
counter-productive. Employees are fundamentally motivated and good. If left to
act in their own interest, they will directly and indirectly benefit the company. If
there is a problem, search for an existing rule that restricts employee freedom.
Eliminate the restriction and the problem will be eliminated.

Complacent business managers are awakening to a world economy and
intense competition. Some continue to use government tariffs, duties and
regulations to retard the inevitable, but that behavior only delays the demise of

5

Enterprise Integration and Management Environment

an infirm business at the expense of the consumer, the taxpayer and
entrepreneurial businesses. Enlightened business managers are collapsing
their management hierarchy and treating their employees like adults. They
have learned that hierarchically distant management cannot know enough
about a problem to make a good decision. Employees who share the company
vision make the best decisions concerning the problems that confront them
hourly.

The employees of enlightened businesses are attuned to their customers and
responsive to the marketplace. They control their process. They can stop it,
change it and expend company funds to improve it. They are trained in many
functions of the process and spontaneously react to minimize the effect of
bottlenecks without management intervention. They establish their own
measures of success. They vary their work hours and location as the situation
dictates. They determine for themselves who does what work and when. Often
they determine how much is re-invested in the business, how much is spent on
labor and who gets what pay. They select their peers and their team leaders.
They are self-coordinated, because they share the same vision for their
company. They are motivated to perform because they want to be proud of their
products and benefit from the profits. They perform significantly better than their
shackled peers.

2.2.3. Economy of Scale

New technology has nullified the economy of scale concept that characterized
the industrial age. Small, specialized steel plants are rapidly capturing market
share from the old behemoths. Personal computers and easy-to-use programs
have eliminated the need for specialized or centralized clerical, accounting,
billing, payroll and reporting organizations. The minimum effective size of a
business is no longer constrained.

Interpersonal communications limit the effective size of teams. The need to
keep employee profit connected with market demand limits the effective size of
a profit center within a business. As a business grows it must subdivide to
maintain effective communications and market sensitivity. Profit centers
become customers and suppliers of other profit centers who in turn supply to the
original customer.

As a source of products, material or services, the profit centers may become
indistinguishable from preferred vendors or subcontractors. They may become
independent businesses. Various forms of voice, video and data
communications will enable the teams and profit centers to share information
and coordinate their activities, regardless of their geographic location.

The teams consist of individuals, who often can afford to own all the resources
they require to perform and manage their work. The minimum effective size of a
business is an individual.

6

Enterprise Integration and Management Environment

2.2.4. Price

Price is still the most efficient consumer/supplier communication tool available.
Price (wages) is still the best way to communicate resource needs and match
resources to the job. Price becomes the communication key between
departments when they grow and separate into independent enterprises, so
why shouldn't price also be the way to communicate demand for intermediate
deliverables among functions (departments) within a company? The use of
price to coordinate the internal activities is explored in the Resources section.

2.3. New Business Drivers

The aforementioned political trends have a direct impact on business.
Domestic and international competition are increasing as are international
market opportunities. The impact of the political trends is particularly acute for
defense contractors. The threat of peace will reduce the demand for defense
products.

Gone are the days of exclusive cash-cow production contracts. No longer are
they the expected result of winning a design competition. Design competitions
may not be won by lobbying the U.S. Congress.

Gone are the cost-plus product development contracts. No longer are mistakes
of little concern, because the customer would pay for them. New contracts will
be fixed-price.

Gone are the days when shoddy products delivered on schedule earned a
delivery incentive award, and fixing the products after delivery earned more
profits. New products will only be sold under warranty.

According to the September 19, 1989 "Financial World":

"… since 1985 defense spending in the U.S. declined 15% in real terms.
Conservative estimates project an annual 2% to 5% real decline well into
the next decade. … Northrup posted a $78 million loss in the second
quarter and immediately slashed 3,000 from its labor force. Hughes
Aircraft … announced plans to trim 6,000 from its payroll. … McDonnell
Douglas surprised Wall Street with a stunning $48 million loss.

"What it boils down to is shakeout and consolidation [that] appears to be
well underway. … the number of firms doing business with the
Department of Defense (DoD) has plummeted 60% in just four years. …
In the past three years, such well-known companies as Honeywell,
Sperry, Gould and Goodyear have dumped their defense divisions …

"To make matters worse, the raft of procurement reforms begun by
Congress and [the] DoD is starting to sting. Increasing competition,
smaller progress payments, mandated second sourcing, lower federal
R&D funding and rigid fixed-price contracts have crimped margins and

7

Enterprise Integration and Management Environment

made weapons building a high-risk venture. …Fixed-price contracts …
have left earnings time bombs in company backlogs where those
contracts were underpriced. … Since 1985, for instance, Hughes, United
Technologies, Boeing and Northrup have together swallowed nearly
$900 million in cost overruns.

"No surprise then that cash flow for most major contractors has declined
nearly 35%. Or that net margins are down. Or that balance sheets are
deteriorating as the industry loads up with debt to fund its increasing
cash demands.

"…European defense contractors have managed to build themselves up
so that they are competing nearly head to head with their U.S.
counterparts. The once-huge U.S. arms trade surplus with Europe has
been trimmed from $7 billion to $1 billion."

To maintain its current level of income in a declining market, a business must
increase its market share at the expense of its competitors. Its competitors,
however are reducing costs, reducing time to market and improving quality to
increase or maintain their market share. Therefore its cost and time to market
reduction and quality improvement objectives must be extraordinary.

Market
$

$

Time

Quality

$

Time

Product cost and schedule reduction and
quality improvement required to maintain current income

Market share required to maintain current income

Product cost and schedule reduction
and Quality improvement achieved by competition

19941987

19941987 19941987

19941987

Declining market

Objectives
Quality

Market
$

Furthermore, future defense products may be developed entirely at the expense
of the contractor. The cost of development would be recouped only after the
delivery of a quantity of product. This fact, coupled with high interest rates, will
further erode already thin profit margins.

The new emphasis on quality and cost to own was manifested in various DoD
initiatives. For example, the Willoughby Templates (transition to production)
reasserted the need to consider production as well as performance issues
(function and reliability) during the design of a product. How a product meets its
original requirements must be demonstrated. The Computer Aided Logistics
(CALS) initiative reasserted the need to consider maintenance as well as
production and performance issues during the design of a product. Product

8

Enterprise Integration and Management Environment

assembly and maintenance information must be made electronically available
to supply and maintenance depots, ships at sea and troops in the field.
Concurrent or Simultaneous Engineering is touted as a means to improve time
to market while considering manufacturing and maintenance issues during
design. Total Quality Management (TQM) says it all in fewer words:
continuously improve.

Although this combination of events has been particularly acute for the defense
industry, they have directly or indirectly caused commercial enterprises to
reconsider their business process. Enterprises that produce largely commercial
products are embracing CALS, Concurrent Engineering and TQM to compete
internationally and satisfy customers who are demanding quality products. The
cost to own products is considered more important than the cost to buy them.

Each of these business drivers are described in detail below. Although they are
directed to defense contractors, more commercial enterprises are beginning to
adopt them as practical business practices.

2.3.1. Willoughby Templates

DoD directive 4245.7-M, Transition from Development to Production
(Willoughby Templates) presents guidelines developed by the Department of
Defense. These guidelines encourage improvement in the product
development processes, particularly during its transition to production. Many of
the recommended changes are reflected in the Process Architecture.

The Willoughby Templates imply that product data should be accessible. This
need is reflected in the Information Architecture, which makes product data
readily available for producibility, reliability and supportability as well as
performance purposes. The design subsection of the Willoughby Templates is
organized into thirteen categories:

1. Design Requirements
2. Trade Studies
3. Design Policy
4. Design Process
5. Design Analysis
6. Parts Selection and Materials Selection
7. Software Design
8. Computer-Aided Design (CAD)
9. Design for Testing

10. Built-In Test (BIT)
11. Configuration Control
12. Design Reviews
13. Design Release

A analysis and technical manuals are addressed in the Logistics subsection.
The following examples illustrate criteria affecting the business process.

9

Enterprise Integration and Management Environment

2.3.1.1. Design Requirements

The designation of detailed design requirements is singularly important in the
discussion of design activities. The requirements definition process starts with
concept formulation, iterates with trade studies and ends in refined
mission/environmental profiles. This results in the firm requirements necessary
for full scale development. Producibility considerations:
• Do design engineers have manufacturing knowledge or experience?
• Does design policy include producibility?
• Are manufacturing engineers involved early in the design process?
• Is engineering involved in developing the manufacturing plan?
Requirements for joint engineering/manufacturing participation throughout the
full-scale development phase are among the most critical. They minimize the
risk associated with the transition from development to production.

2.3.1.2. Trade Studies

The DoD definition of trade studies is the evaluation of concepts, policies,
techniques, methods, and systems in terms of their cost and effectiveness.
Trade study considerations:
• Are trade studies iterative from concept through full scale development

(FSD)?
• Have trade study results identified the risks associated with new

technologies?
• Has the producibility of each design alternative been considered in a

separate trade study?
• Have the salient design standards been passed on to subcontractors?

2.3.1.3. Design Policy

A design policy is a statement supported by controlled engineering manuals,
procedures, or guidelines, that attempts to reduce risk by implementing
fundamental design principles and practices. Where (corporate design
policies) exist, they often lack substantive direction regarding best design
practices.
Design polity considerations:
• Are lessons learned reflected in the design policy or guidelines?
• Is the design process treated in the design policy guidelines and

standards?

2.3.1.4. Design Process

The engineering design activities that are necessary for product development
are often treated as discrete functional activity, with little or no involvement of
the other plant functions (e.g., manufacturing or production engineering). As a
result, the design of the product meets performance specifications at the
completion of development, but does not allow for the limitations of
manufacturing processes and procedures found on the factory floor. Hence, the
apparently mature product configuration does not survive rate production

10

Enterprise Integration and Management Environment

without performance degradation, and significant redesign is required for
efficient production.
Design process considerations:
• Does the policy of the contractor include producibility as part of design

reviews?
• Are manufacturing and producibility personnel involved in the design

process?
• Are proven manufacturing processes being used whenever possible,

with trade studies performed to justify the use of new technology?
• Are design and manufacturing engineers co-located during

development?

2.3.1.5. Design Analysis

As the design process progresses, analytical techniques guide the continuing
effort to arrive at a mature design. While the design process concerns the
actual additions, deletions and changes to the design, design analysis
evaluates the ability of the design to meet performance specifications at low
risk. Those analyses oriented to the reduction of design risk include, but are not
limited to, stress and strength, worst case tolerance, sneak circuit, failure modes
and effects, and thermal analyses. These are the checklist items:
Design analysis considerations:
• Has continuous design analysis throughout the design process been

specific?
• Do division standards identify design analysis as an integral part of the

design process?
• Are design engineers required to participate in and use the results of

design analyses?
• Has proper balance been achieved between design analysis and

testing?

2.3.1.6. Parts and Materials Selection

Design engineers often apply parts and materials too close to maximum rated
stress levels and may also specify nonstandard parts in an effort to meet
performance requirements. The uncontrolled use of these techniques leads to
high risk during testing and operational use. They decrease operational
readiness, and increase logistics support systems complexity.
Parts and material selection considerations:
• Does the contractor have an established set of de-rating criteria that all

engineers must use?
• Will part operating temperatures be determined by thermal survey

measurements?
• Are the results of thermal analyses and thermal survey measurements

being used in the design process?

11

Enterprise Integration and Management Environment

2.3.1.7. Software Design

Modern weapon systems have become increasingly dependent upon software
for their operation. No cost-effective procedure exists for eliminating failures, or
even accurately measuring the failure rate due to software. Software design
practices must follow a disciplined process similar to proven hardware design
practices. Trade analyses can disclose significant life-cycle cost savings. They
result in the proper allocation of hardware and software roles. They can
minimize the difficulty of isolating and correcting design problems.
Software design considerations:
• Are hardware/software allocations assigned soon after preliminary

design trades are completed?
• Are hardware/software interfaces clearly defined?
• Is the draft of the users' manual outline scheduled for completion before

the start of programming?
• Are reports available for review at the detailed design and coding level?

2.3.1.8. Computer-Aided Design (CAD)

Here the Willoughby Templates directly address the role of computing, and in
particular the use of design workstations in developing reliable products. Many
design tools and analysis techniques that will facilitate the design process are
not used by contractors. They do not impact the product meaningfully. Design
tools that will facilitate the design process and yield a producible product are
available. The use of such equipment decreases the length and cost of
reliability development testing. It decreases the cost for tooling and test
equipment. It eliminates redesign efforts due to producibility issues. It reduces
the risk during the transition from development to production.
CAD/CAM database considerations:
• Design specifications including mission profile, performance limits and

requirements, and reliability requirements.
• Design standards and rules that support (Division) policies.
• Verified libraries of preferred electronic parts with both performance and

physical characteristics, including tolerance
• Preferred mechanical parts
• Previously manufactured and qualified assemblies
• Materials, processes, and finishes
• Manufacturing processes, standards, and rules
• Design data, including analytical results
• Manufacturing data, including design release status, test status, test and

failure analyses, and manufacturing yield and trend analysis
• Tool design
• Control of design release and configuration.
Computer-Aided Design considerations:
• Is the use of CAD a Division policy?
• Are individual terminals (sized for basic text processing and display

functions) available for each engineer?
• Are interactive graphics terminals provided for groups of engineers?

12

Enterprise Integration and Management Environment

• Does a formalized training program exist for introducing engineers to
CAD?

• Is a common and up-to-date database available containing parts and
materials information as well as design engineering information?

• Is CAD included in the Division's overall modernization strategy?

2.3.1.9. Design for Testing

To provide for efficient and economical manufacturing, test and inspection
capabilities must be incorporated in the design. Past development projects
have neglected to consider the need for production and field test capabilities
during the early design phase. Attempting to add these capabilities later is
difficult and costly, especially in those cases where production has begun.
These are the relevant checklist items:
• Is a division policy for design-for-testing in effect?
• Have production test guidelines been established before full scale

development?
• Have trade studies been done during design to establish relative levels

of built-in test/automatic test equipment/manual testing?
• Is automatic test equipment being selected/designed concurrently with

the prime system?

2.3.1.10. Built-In Test

The continuing increase in complexity of military systems has imposed
additional operational, maintenance, and logistics burdens on our military
organizations. Unfortunately, these organizations are concurrently
experiencing a reduction of both manning and skill levels of operators and
maintenance personnel. Consequently, Built-In Test (BIT) monitoring and fault
isolation capabilities must be incorporated as integral features of system
design. BIT should also be used as part of the manufacturing process to verify
proper functioning at various levels of assembly.
BIT considerations:
• Have BIT design details been identified and included as part of initial

design efforts?
• Have BIT requirements been passed on to subcontractors and vendors?
• Have production test and integration personnel been involved in initial

BIT design and trade-off efforts?

2.3.1.11. Configuration Control

A smooth transition from development into production requires that the design
be documented and its 'configuration' carefully controlled. Only then can the
final planning for production, installation, maintenance, and logistics be
completed. Configuration control must be maintained throughout the life cycle
of the equipment to maximize operational availability and minimum support
costs.

13

Enterprise Integration and Management Environment

Configuration control considerations:
• Have configuration control procedures been tailored to the product's

relative complexity?
• Are configuration control requirements flowed down to all

subcontractors?
• Does the status accounting system allow for information feedback from

the field?
• Has an effective quality assurance change verification system been

established?
• Are technically qualified personnel involved in configuration

management?

2.3.2. Design Reviews

Formal design reviews often become a forum for providing an overview of the
overall hardware design, rather than an in-depth technical assessment of
design maturity. Design reviews must be performed by technically competent
personnel if the technical risk of proceeding to the next phase of the
development process is to be accurately assessed.
Design review considerations:
• Does the contractor have a policy identifying procedures for internal

reviews as well as customer required reviews?
• Is emphasis being placed on technical interchange meetings between

contractor and customer rather than large-scale reviews?
• Are reviews being done by qualified technical experts who can challenge

the design and assess risks?
• Are technical design review schedules established based on design

progress?

2.3.2.1. Design Release

At some point design must cease and the product definition must then be
released to manufacturing. Then a detailed design review can occur. A
meaningful configuration audit can be performed. Producibility, system opera-
tion and maintenance documentation can be evaluated.
Design release considerations:
• Has engineering scheduled design releases with manufacturing and

purchasing?
• Has technical risk been judged to be acceptable before design release?
• Does the management system control pre-released drawings?
• Have critical drawings been identified?
• Is the release of critical drawings properly scheduled to meet

requirements?
• Does the design release process require concurrent review by all

disciplines?

14

Enterprise Integration and Management Environment

2.3.2.2. Logistics Support Analysis

Logistics Support Analysis (LSA) defines readiness and support related
performance parameters for the systems engineering process. It affects the
design of the weapon and weapon support system. It provides accurate
weapon system support requirements information for use in acquiring
operational phase resources.
LSA considerations:
• Does the effort start with the initial design?
• Is LSA integrated into the design analysis and design review process?
• Are the engineering analyses coordinated (trade-off analysis) to achieve

a cost-effective impact on design as early as possible?
• Does the LSA provide quantitative parameters used in the system and

design specifications?

2.3.2.3. Technical Manuals

The technical manual development process involves the translation of
engineering work and design analysis into an operations and maintenance
information. The engineering change process must involve the technical
manuals. The use of CAD/CAM databases in the technical manual process
provides this link. Their use improves technical manual accuracy and
preparation efficiency.

The information used to develop technical manuals is usually extracted
manually from a variety of sources at high cost and error rate. They are mostly
prepared using only word processing techniques. Integrating technical manual
preparation with CAD/CAM/LSA databases will improve their accuracy and
increase productivity.

2.3.3. CALS Initiative

Closely related with the Willoughby Templates in its intent is the DoD
Computer-Aided Acquisition and Logistics Support (CALS) initiative. It strongly
influences the Process and Information Architectures. CALS is a cooperative
effort to establish a technical infrastructure and standards that will reduce the
cost of operating, supporting, and maintaining aerospace and military
equipment and assure the timely availability of replacement parts and technical
data. It involves government agencies contractors, and virtually all
subcontractors and suppliers. The proposed solution is to make product data
available in digital form to all who need it.

Although the focus of CALS is on logistics, it requires a computer-based product
definition. An electronic format allows the instantaneous dissemination of
product data anywhere it is needed. Any paper manifestation of product data is
to be generated from the electronic master. The electronic product model is to
be created early in the design process and used throughout the manufacturing
process. That same data is used by the logistic functions for product

15

Enterprise Integration and Management Environment

deployment and repair. The scope and objectives of CALS are described in the
following paragraphs.

2.3.3.1. Scope

The CALS initiative is divided into three areas:
• Technical database definition and access

Product definition database
Integrated support database

• Digital data interchange
Product definition data
Logistics Support Analysis (LSA)
Technical manuals
Training materials
Technical plans and reports
Operational feedback data

• Integration of processes
Reliability and Maintainability (R&M) integration in CAD/CAE

2.3.3.2. Objectives

The stated objectives of CALS are:
1. Accelerate integration of RAM design tools into contractor CAD/CAE

systems.
2. Automate contractor processes for generating logistic technical

information.
3. Rapidly increase the ability of the DoD to receive, distribute and use

technical information in digital form.

2.3.3.3. Core Requirements

Recognizing that CALS cannot be implemented all at once, its implementation
is divided into two phases.

2.3.3.3.1. Phase 1

The initial focus is on:
• A few major logistics applications
• Available technology and standards
• A "records transfer" environment

2.3.3.3.2. Phase 2

Subsequent effort will be focused on:
• a wider range of design, manufacturing, and logistics applications,
• more advanced technology and standards,
• a centroid of advanced data models,
• an on-line access environment (contractor and sub-contractors will

maintain on-line databases for direct access by the customer).

16

Enterprise Integration and Management Environment

The Department of Defense is encouraging and actively participating in the
creation of an emerging product definition standard, the Product Data Exchange
Specification (PDES). PDES compliant products will enable the customer to
more readily use contractor product definition data as an integral part of field
operations.

2.3.4. Concurrent Engineering

Concurrent engineering is an attempt to shorten the engineering schedule
while assuring that reliability, producibility and maintainability concerns are
addressed. Much of this can be accomplished by reducing the bureaucracy.
More can be accomplished by making designs available before their
completion. Various analyses and manufacturing process, tool and fixture
design should be performed as much in parallel with the design of the product
as possible.

Concurrent engineering challenges the notion that only a designer knows when
a design is sufficiently complete for disclosure. Originally, this paternalistic
approach was used to minimize the waste of time of an analyst or tool designer
when a design was expected to change radically. Gradually it became an
excuse by designers to hide a design until it was complete to avoid criticism and
the burden on change. This information hiding makes it difficult for someone to
suggest a change that might favorably affect the functionality, reliability,
producibility or maintainability of the product before the design is committed to
production. Designers are saved some embarrassment and the time required
to change their designs, but the quality of the product suffers.

The reality is that no one but the user of the information knows what might be of
value. It is the responsibility of the information user to decide when and when
not to invest time in a premature design and risk the resource costs consumed
by the effort. Even if a design has only one line or arc, it may be what is needed
for an analysis or a constraint. A designer should only indicate the degree of
completeness or the likelihood of change of a design. Information hiding of any
kind has no place in the business of the future.

2.3.5. Total Quality Management

The aforementioned initiatives fall under an umbrella initiative known as Total
Quality Management (TQM), which promotes continuous improvement. As soon
as one improvement is completed, start on the next one.

2.3.6. New Business Drivers Summary

Unfortunately for defense contractors, until the transition from cost-plus to fixed-
price contracts is complete, the defense contractor must continue to contend
with micro-management problems. This is especially true of labor accounting.
Having to contend with the worst of the old world as well as the worst of the new
world exacerbates the survival problem for defense contractors. Commercial

17

Enterprise Integration and Management Environment

companies have no constraint on their adoption of new business processes
other than their own bureaucracy.

18

Enterprise Integration and Management Basic Relationships

3. Basic Relationships

The new business drivers, competition and common sense dictate fundamental
changes in the way business is conducted. The design and manufacturing
process must be simplified and when practical, automated. The new business
process accommodates concurrent engineering and disciplined product
management. It allows the highest product quality to be attained. It can be
used to identify, fix and learn from quality problems so that the business can
continuously improve.

Business Drivers
(CALS, cost, fast cycle product to market, TQM)

New Business Process

This new business process has been generalized and described in the Generic
Process section.

Derived from this generic process are the necessary data relationships needed
to conduct the process. To conduct concurrent engineering, the process
management and product definition data must be shared among the
participants. To support the process, the data that results from the process must
be readily shared and yet be adequately controlled to assure that access is
authorized and that the version of data accessed is appropriate for its use. Past
attempts to relate subsets of the program and product definition data have
resulted in complex data relationships, which prove to be unnavigable. A
relatively simple method of relating this data is described in the Information
Integration section.

Integrated Information New Business Process

Skills are required to conduct the process. These are embodied in resources.

New Business Process Resources

The computer, tool, machine, human or facility resources required to design and
manufacture a product may be owned by the prime contractor, a subcontractor
or a partner.

Computers Humans Machines Facilities

Resources

Tools

The resources are interdependent. For example tools cannot be useful unless
employed by computers, machines or humans. Similarly, human resources are

19

Enterprise Integration and Management Basic Relationships

more productive when they employ tools and machines. Computers, tools ,
machines and humans need facilities for protection, sustenance and a home.

Computers Humans Machines FacilitiesTools

The rapidly changing marketplace demands that product development efforts
(Programs) rapidly grow and contract. Programs or portions thereof may need
to be conducted with various degrees of secrecy during portions of the life-cycle
of the products. Key resources often work on many Programs and cannot be re-
located. To support this business environment, a network of computing
resources that can be quickly scaled to meet the affordable performance needs
of each Program. These computing resources are described in the Computing
Resources section.

Computers

Resources

Information integration imposes additional requirements on the computing
resources (distributed data management, shared data, product and tool
configuration management, version control…). To make the computing
resource requirements as simple as possible, it may impose certain restrictions
on the computer-based tools (Unix/POSIX).

A backplane or framework concept is the most advanced approach to integrate
the process, information and resource aspects of an enterprise. Like the
backplane of a computer with a series of printed circuit assemblies inserted in it
that can be readily replaced with other circuit boards as needed to adapt to
changing needs, the framework provides for the control and exchange of data
among the tools "inserted" into it. The tools are described in the Tool Resource
section. The framework also has a frontplane that provides a consistent
interface to the human and machine resources utilizing the framework.

Integral to the current and future process are tools.

Resources

Tools

These may be drills, milling machine cutters or computer-based tools, known as
application programs or software tools. Application programs are currently
dominated by analysis, simulation and design tools. Key to the development of
a complete and unambiguous product definition is a solid modeling tool. A
modern set of computer-based tools is required to capitalize on solid models

20

Enterprise Integration and Management Basic Relationships

and maximize the productivity of each employee. These tools are described in
detail in the Tool Resources section.

The key resources are human. Without them, none of the other resources can
be directly or indirectly made to work.

Humans

Resources

The training of humans is recognized as the largest cost of any process change.
That cost is often aggravated by employee turn-over. The need to train
employees to use many different tools, and to be re-trained in their use as new
versions are released further aggravates training costs. The changes in roles,
responsibilities and organization of human resources required to support the
new business process are described in the Human Resources section.

To maximize individual productivity and minimize training costs, a user interface
that provides common system functions in a consistent manner is required. This
user interface requirement impacts the requirements for both the computer tools
and the computers on which the tools must run.

Computers Tools Machines

User
Interface

Machines are most important to the manufacturing aspect of an enterprise.
They move the end-effector to cut the metal. They clean, insert and apply the
solder to assemble printed circuit boards.

Machines

Resources

They make the human resources that make them and control them more
productive.

Facilities provide a secure and comfortable place for all of the other resources
to call home.

Facilities

Resources

21

Enterprise Integration and Management Basic Relationships

Facilities supply sustenance (water, oxygen, oil, food, fuel) and remove waste
(sewage, removed material). The Facilities required to support the new
business process are described in the Facilities Resources section.

How each of these may manifest themselves is depicted in the following
diagram.

Other
Tools as

distinguished
by mfg.
process

Computers Tools Humans Machines Facilities

Software
Tools

Electronic
and

Electrical
Tools

Structural
and

Mechanical
Tools

C
om

pu
te

rs

Peripheral Devices

Disk Drives

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

P
ro

c
e

s
s

M
a

n
a

g
e

r

PROCESS

O
pe

ra
tin

g
S

ys
te

m Windows

Distributed Data

N
et

w
or

k

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UI UI UI UI UI

Process

Business Drivers

ResourcesInformation

The tools, humans and machines are "inserted" in or "removed" from the
framework as the need arises. Each may be readily interleaved in the process.
The framework approach is one of many aspects of computing described in the
Computing Resources section.

22

Enterprise Integration and Management Generic Process

4. Generic Process

All of the bad practices of the current business process, like inappropriate or
inadequately defined requirements or products, serial development, islands of
automation, authoritative management, micro-management and their adverse
effects on the cost of product ownership, market share and profit alluded to in
the Introduction could be delineated at length. So too can their specific
remedies like employee empowerment, concurrent engineering, multi-media
communications, data and tool integration. However, the most meaningful way
to relate the information in this book is by way of the product development and
manufacturing process.

The author has developed his share of activity and information models. Most
were done to at least partially describe the as-is process for a specific business.
For its details one must peruse the flow diagrams buried in standard practice
manuals and situation-specific addendum. The as-is business process for a
major enterprise is too confused, bureaucratic and convoluted and situation-
dependent to be comprehensively described. That futile effort will not be
repeated here.

Instead a generic process is used as the framework for this book. The
generality of the process is a function of the degree of detail (granularity) at
which it is described. At high levels of granularity, the process is the same
regardless of the product. At low levels of process granularity, many of the tasks
associated with the process are a function of the product. For example,
electronic design and validation tasks and their information and tools are
pertinent only to products with electronic systems. Compilation tasks are
pertinent only to products with software components.

The data relationships required to support the generic process are described in
the Information section. The resources required to conduct it are described in
the Resources section. The Resources section is the largest, because it
includes descriptions of all the resources and tasks required to conduct the
process for a sophisticated product. A product that includes many system types
(software, electronic, electrical, hydraulic, structural, mechanical, thermal,
aerodynamic …).

23

Enterprise Integration and Management Generic Process

Although the process may produce different products or "services", it is
essentially the same for all businesses. Some enterprises are involved in the
entire process. Others specialize in a part of it. Each activity described can be
replaced or augmented with the purchase of the deliverables that would
otherwise result from the activity. The process described here has no regard for
the quantity of product instances made or their intent (prototype or production).
It is generic.

Process:

Understand
market

Market
capabilities

Sell
capabilities

MarketingActivities -
Organization:

Plan and Manage Engineering

Plan and Manage Manufacturing

Fabricate
Components

and Tools

Inspect
Components

Assemble
Components

and
Assemblies

Test
Assemblies

Fabrication,
Inspection,

Assembly and
Test

Define Product
Requirements

Specify
Product

System
Engineering

Define
Manufacturing

Process

Manufacturing
Process

Planning, Tool
Design, NC

Define
Manufacturing

Tools

Support

Define
Support
Process

Define
Support
Tools

Support
Product

Design
Systems

Package
Components

Define
Assemblies.

Design

Derive
Components

Validate
Systems

Validate
Assemblies

Analysis
and

Simulation

Validate
Components.

4.1. Plan and Manage Engineering

Before the process can begin for a new product or the modification of an old
one, it must be planned. The funds and resources must be allocated,
scheduled and applied to at least the most immediate part of the process.
Large plans should be decomposed into projects, tasks, subtasks until the work
defined is small enough for an individual resource to perform. This hierarchy of
work is entitled the Task Breakdown Structure (TBS). It is the product most
used by product development (Program) or project managers. It provides
individuals with accurate information about the process so they can coordinate
their activities without the need for management intervention.

Throughout the process there are deliverables. They may be information
deliverables on various media, or physical deliverables from one specialized

24

Enterprise Integration and Management Generic Process

enterprise to another (external deliverables), or from one group to another
(internal deliverables). The result of one subtask is a deliverable for another
subtask. This interdependence on deliverables requires that the tasks be
coordinated. Resource time should not be wasted waiting for deliverables. To
compress overall time, as many tasks as practical should be performed in
parallel.

4.2. Define Product Requirement

Some enterprises specialize in portions of the process like market research,
design, manufacturing or maintenance. Regardless of the extent of their
involvement in the process, every enterprise examines its marketplace to
determine the requirements for a successful new product or a profitable
modification of an existing product. Whether by intensive market research and
analysis or intuition, the requirements for a product are delineated. The larger
the magnitude of the investment the more formality and detail will be invested
defining the requirements.

This is the Define Requirements part of the process. These are behavioral
requirements. They are usually expressed in qualitative terms that describe the
function of the product (transport, feed, house, clothe, enlighten, entertain …).
This description can be readily communicated between a potential customer
and a supplier. It should be as detailed as practical. However, it should not
specify how the behavior is to be manifested, which tends to bias a design and
potentially exclude better designs.

The behavioral descriptions of each aspect of the product may be decomposed
into sub-descriptions. The descriptions should include time, sequence and
other dependencies. All the descriptions should be organized into a Function
Breakdown Structure (FBS). The FBS is the customer view of the product.
Each behavioral description is a deliverable to the next step in the process.

The result of this exercise is the "as required" baseline configuration.

4.3. Specify Product

The requirements must be converted from a qualitative description to a
quantitative specification before meaningful design and analysis can be
performed. If a product is to be used in an office environment, that environment
must be described in terms of temperature, humidity, shock, vibration and
available electrical power. If a product is to be eaten, the allowable limits of its
weight, color, texture and moisture content must be described.

Specifications will often conflict, so the sophisticated enterprises with longer
time-to-market opportunities will correlate specifications to detect those which
conflict. Then the product will be re-specified such that the net effect of the
specifications will likely be an optimum product. Although the conflicts can be

25

Enterprise Integration and Management Generic Process

resolved during the Design System part of the process, specification
compromise is less expensive than resolving design conflicts later.

The product specifications initially correlate with the behaviors they are to
exhibit. Consequently, the specifications should be organized in a System
Breakdown Structure (SBS) like that of the FBS to provide a home for each
specification deliverable. The SBS is the engineering view of the product. As
the product behavior is described to more detail, the product specifications can
be specified to more detail.

The result of this exercise is the "as specified" baseline configuration.

4.4. Design Systems and Derive Components

Candidate systems are defined to meet the specifications. These may be
electronic, software, hydraulic, structural, mechanical or any combination of
many system types. As the product systems are specified to more detail, the
systems that are to perform the behaviors can be defined to more detail and
exactness. Initially, the system definitions may be manifested as simple
schematics. Ultimately, they may be manifested as complex solid models. In
any event, the systems must be decomposed into subsystems and the
subsystems decomposed into components, each with a corresponding set of
specifications and manifestations. The system design deliverables are
associated with the same SBS nodes as their specifications.

Components may breakdown into primitive solids or into surfaces called
boundary elements, or both. These representations are organized in a
Component Breakdown Structure (CBS). The boundary elements may be
grouped in to features. The CBS provides an engineering or manufacturing
view of components as a function of the features defined. To analyze the
structural, thermal, electrical, acoustic and other kinds of interaction among
systems, subsystems and components, their connectivity must be known.
Connection features may be defined for this purpose.

4.5. Verify Systems and Components

Each subsystem is analyzed to determine if it will in fact meet its specification.
Subsystems are compared to determine which is the better one. This
comparison is done firstly with isolated subsystems and secondly with the
subsystems in combination with other subsystems. Ideally each subsystem is
evaluated on the basis of its impact on the entire product, because subtle
subsystem interactions can significantly affect the total product cost,
performance or other selection criteria. Unfortunately, the cost of fully integrated
analysis is such that more myopic comparisons may be conducted. Entire
product configurations are similarly compared to determine which is the better
product relative to the specifications. Unselected systems should be retained in
the event that the selected design is found to be unsatisfactory later in the
process.

26

Enterprise Integration and Management Generic Process

4.6. Package Components

As component designs are validated relative to their specifications, the
components are arranged spatially. Like puzzle pieces, electronic components
are arranged in two dimensions to maximize their density without violating
connectivity constraints. Thermally sensitive components may be forced to be
as far as possible from hot components. Radio frequency sensitive components
may be forced to be as far as possible from those that emit electromagnetic
radiation.

Similarly, three-dimensional models of circuit board assemblies and hydraulic,
electric, fuel and other system components are spatially arranged for maximum
product density, optimum weight distribution and other criteria. For example,
radiation sensitive components should be separated from radiating
components. Less reliable components should be more accessible than more
reliable components. The position and orientation of hydraulic or fuel system
components that are connected with tubes should have priority over the position
and orientation of electrical system components connected by wires. Similarly,
the arrangement of electrical system components connected by fiberoptic or
large cables should be given priority over electrical components connected by
more easily bent wires. Given this maintainability and producibility criteria,
proper packaging is in one sense an extension of the validation part of the
process.

This is what is commonly called an electronic mockup. Once the components
are arranged, they may be modified and structural system components added to
facilitate assembly. Assembly features (face/face, slot/key, hole/pin) may be
defined to facilitate assembly.

The assembly commands of future modelers will reference assembly features.
For example, the selection of a pin feature of a part followed by an insert
command followed by the selection of a hole feature of another part would be
all that is needed to properly orientate the parts relative to each other. Even
after three-dimensional packaging is as automated as two-dimensional
electrical circuit assembly arrangement is today, assembly features will facilitate
the definition of assembly instructions for human or machine resources. Grasp
and assembly features will be particularly useful vision-dependent robots.

4.7. Define Assemblies

As components are arranged, their spatial tolerances and assembly sequence
can be defined. Wide tolerance bands minimize fabrication and assembly
costs, but the accumulation of tolerances can make assembly impossible. This
organization of assembly sequence and component spatial information is
maintained in an Assembly Breakdown Structure (ABS). The ABS provides the
manufacturing and support views of the product.

27

Enterprise Integration and Management Generic Process

4.8. Validate Assemblies

Ideally, the components are modeled as solids with tolerance envelopes so
components that can potentially occupy the same space at the same time can
be easily detected. The viability of the assembly sequence and the movement
of mechanical assemblies can be similarly validated.

The result of the foregoing four steps is the conventional "as designed" baseline
configuration, but often the assembly validation is not done.

4.9. Plan and Manage Manufacturing

Before the manufacturing part of the process can begin for a new product or the
modification of an old one, it must be planned. The funds and resources must
be allocated, scheduled and applied. As components are defined and
arranged, the manufacturing part of the process (purchasing, fabrication,
inspection, assembly and test) can be defined and managed by extending the
TBS to include manufacturing tasks.

4.10. Define Manufacturing Process

Component fabrication features are defined to provide the basis for the
fabrication (deposit, mill, turn, weld) part of the process. Fabrication processes
require intermediate definitions of the components as they are transformed from
workpieces (blocks of material) into finished parts. The addition of coatings,
serial numbers and the like, may be part of the process.

Component inspection features are defined to provide a basis for inspecting the
parts as they are fabricated or purchased. Additional assembly features, like
grasping features, may be required. System test features are defined for
assemblies that comprise systems for which there are specifications that can be
used as test criteria. All of these feature definitions are associated with the CBS
of the respective components. The assembly features are related by way of
assembly commands.

The manufacturing operations required to fabricate, inspect, assemble and test
the product are added to the TBS as recurring tasks for each part and assembly
instance required. Inspection and test tasks may not be required for every
instance of a part or system assembly. Process control measures must be
established.

4.11. Define Manufacturing Tools

As fabrication and assembly processes are defined, the special tools necessary
to hold and cut components during fabrication, hold and probe them during
inspection, assemble them during assembly, or connect with them during
testing can be defined. Ideally, the manufacturing resources have been
modeled as solids. Then the contacting surfaces of the tools can easily be

28

Enterprise Integration and Management Generic Process

defined by orienting the worst case tolerance variation of a component or
assembly model with the work space of the selected machine, and subtracting
both models from a tooling "workpiece."

Manufacturing tools that cannot be purchased must be specified, designed,
validated and manufactured. That process is no different than the one used to
develop and produce a product. A tool can be an intermediate deliverable
within the process or a product in itself, depending on the viewpoint of its
producer.

The result of the foregoing Plan and Manage Manufacturing through the Define
Manufacturing Tools steps is the conventional "as planned" baseline
configuration. The result of all of the foregoing steps is the concurrent
engineering "as designed" baseline configuration.

4.12. Fabricate or Purchase Components

As the materials and manufacturing tools become available, fabrication can be
conducted according to the operations delineated in the appropriate fabrication
task in the TBS.

4.13. Inspect Components

As the components and inspection tools become available, inspection can be
conducted according to the operations delineated in the appropriate inspection
task in the TBS.

4.14. Assemble Components and Assemblies

As the inspected components and assembly tools become available, assembly
can be conducted according to the operations delineated in the appropriate
assembly task in the TBS.

4.15. Test Assemblies

As the assemblies and test tools become available such that a system exists,
testing can be conducted according to the operations delineated in the
appropriate testing task in the TBS.

The result of the foregoing four steps is the "as manufactured" baseline
configuration. If the product must be shipped partially assembled or additional
packaging is required for safe delivery, there would be an "as delivered"
configuration that may include packaging materials and instructions, shipping
and handling instructions, uncrating and assembly instructions and assembly
tools.

29

Enterprise Integration and Management Generic Process

4.16. Plan and Manage Support

Before the support part of the process can begin for a new or modified product,
it must be planned. The funds and resources must be allocated, scheduled and
applied. Given the product definition, the support part of the process can be
defined and managed by extending the TBS to include the appropriate support
tasks.

4.17. Define Support Process

As the product instances are tested, they can be delivered. The behavioral
requirements delineated in the FBS indicate replenishment needs (fuel, oil,
toner). The reliability specifications in the SBS indicate maintenance needs.
Accordingly, replacement component and assembly quantities are estimated
and added to the number of instances of each required to produce the product.
Field and depot replenishment and maintenance tasks and their intervals are
defined. Each such task may take advantage of the component inspection and
assembly and system assembly test features defined earlier. They can be
referenced in the definition of replenishment and maintenance operations.
These operations are scheduled and added to the TBS as recurring tasks for
each product instance.

The behavioral requirements delineated in the FBS may also indicate likely
repair requirements. Repair operations can be delineated and added to the
TBS, but not scheduled until the need arises.

4.18. Define Support Tools

As the ABS is defined, the special tools necessary to assemble, disassemble
and test assemblies or hold and probe components can be defined. Many of
the manufacturing tools can be used or copied and modified for support
purposes. Repairs that do not involve the simple replacement of parts (plug
hole in hull) often require tools unique to the repair operations.

Support tools that cannot be purchased must be specified, designed, validated
and manufactured with a process no different than the one used to define the
product and its manufacture.

The result of the foregoing four steps is the "as maintained" baseline
configuration.

4.19. Support Product

As the supplies and support tools become available, refurbishment,
maintenance and repair tasks can be conducted according to the operations
delineated in the corresponding support tasks in the TBS.

30

Enterprise Integration and Management Generic Process

As replacement products become available, dispose of the older models in an
environmentally sound manner.

4.20. Process Implementations

It may not be practical to change the entire process at once, so where should
change begin? Should it be in manufacturing where the costs and potential
returns are large, or in engineering, where the expense is relatively small? The
traditional implementation of the process often delays pre-manufacturing tasks
until after a formal engineering release of the product definition to
manufacturing, so bad designs are not detected until they are already part of the
formal manufacturing process. A bad design that would cost $10 to fix during
the design phase will cost $100 to fix during the manufacturing phase, $1,000 to
fix after manufacturing and before delivery and $10,000 to fix after delivery.
85% of the cost of a product for its life-time is committed before the release of its
design for production.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

CONCEPTION VALIDATION DEVELOPMENT PRODUCTION OPERATION

$ COMMITTED

$ SPENT

%
 P

R
O

D
U

C
T

 C
O

S
T

Obviously, the initial focus of a process improvement effort should be to reduce
the bureaucracy and provide the integrated tools necessary to support the
thorough definition and validation of a product before its release for rate
production. Configuration management, change control, labor accounting and
the like should be a natural consequence of using the tools. The product
definition must include all of the Pre-Manufacturing activities (process planning,
tool design, numerical control programming, etc.) to be complete. This
postpones release until all the manufacturing processes and tools are defined
and validated. Doing the pre-manufacturing tasks as concurrently as practical
with the engineering tasks will maximize the "window of opportunity" for the
product.

31

Enterprise Integration and Management Generic Process

Process:

Activities -
Organization:

Plan and Manage Manufacturing

Fabricate
Components

and Tools

Inspect
Components

Assemble
Components

and
Assemblies

Test
Assemblies

Manufacturing

Define
Manufacturing

Process

Define
Manufacturing

Tools

Plan and Manage Support

Support

Define
Support
Process

Define
Support
Tools

Support
Product

Engineering

R
e

le
a

s
e

Manufacturing
Process

Planning, Tool
Design, NC

Similarly, the support analysis should be performed as early as possible to
determine the supportability (maintainability, repair) of a design before a
commitment to manufacture it is made. The design is not released for
production until it has "earned the right to release."

Process:

Activities -
Organization:

Plan and Manage Manufacturing

Fabricate
Components

and Tools

Inspect
Components

Assemble
Components

and
Assemblies

Test
Assemblies

Manufacturing

Define
Manufacturing

Process

Define
Manufacturing

Tools

Plan and Manage Support

Support

Define
Support
Process

Define
Support
Tools

Support
Product

Engineering
Manufacturing

Process
Planning, Tool

Design, NC

32

Enterprise Integration and Management Generic Process

The preoccupation with performing pre-manufacturing tasks during design is
most pertinent to low-rate or short-term manufacturing. For high rate, long term
manufacturing, it may in fact be more practical to build the factory necessary to
produce a market dominating design. Market domination is often worth the
capital investment as the Japanese automakers and the Saturn line
demonstrate.

4.21. Process Interruptions

Although there is one and only one process, it may have business or
contractual interruptions. The assumptions upon which the requirements of a
product are based may be rendered invalid by unforeseen events. The process
may be broken into segments to provide a pause in the process sufficient to
examine the work accomplished, the degree of compliance with the product
requirements on which it was based or the viability of those requirements before
another major investment is made to continue the process.

A system requirements review may interrupt the process near the end of product
conceptual design and validation phase before an investment in more detailed
design and development of prototypes is made. A preliminary design review
may interrupt the process near the end of product preliminary design and
validation phase before an investment in even more detailed design is made. A
detail design review may interrupt the process before an investment in
manufacturing tools is made.

4.22. Process Iterations

The process described thus far does not include iterations. Iterations are
required, because the product development process is one of discovery and
optimization. Each optimization disrupts the continuous flow of the process.

The process is like a mountain stream. When viewed from afar it looks like a
ribbon of smooth laminar flow in a singular direction. When looked upon more
closely, large boulders (process steps) are visible. The eddies (design
iterations) induced by the boulders make the stream turbulent. An even closer
inspection reveals rocks and pebbles. Around each is also an eddy (analysis
iteration). They all blend with and contribute to the eddies around the boulders
whose eddies contribute to the behavior of the entire stream.

Move a pebble, rock or boulder and measure the impact of that change as a
function of the down stream turbulence. The larger the object or the further it is
up stream, the more the downstream effect. Changes to higher level (major
system) or earlier product definitions have similarly disruptive effects.

At times two or more streams may merge into one. The turbulence created at
their intersection is like the resource conflict and resolution that occurs when
two or more products are manufactured in the same facility at the same time.

33

Enterprise Integration and Management Generic Process

Each swirl around an eddy is another iteration of the portion of the process.
Each iteration delays the delivery of its deliverable. The net effect, however, is a
better product.

4.23. Information Hiding

Concurrent engineering is an attempt to shorten the engineering schedule
beyond that which may be done by eliminating the engineering bureaucracy,
and still insure that reliability, producibility and maintainability concerns are
addressed. By making designs available before their completion, analysis and
manufacturing process, tool and fixture design can be performed as much in
parallel with the design of the product as possible. The notion that only a
designer knows when a design is sufficiently complete for disclosure to do
anyone any good is inconsistent with concurrent engineering.

Originally, this paternalistic approach was used to avoid having analysts or tool
designers invest time in a design that was likely to change. Later, it was used
as an excuse by designers to hide a design until it was complete.
Unfortunately, that behavior also makes it difficult for someone to suggest a
change that might make the product more functional, reliable, producible or
maintainable. The designers were saved the embarrassment and time required
to change their designs, but the quality of the product suffered.

The reality is that no one but the user of the information knows what might be of
value. The information user must decide whether or not to invest time in a
premature design and risk the cost of that labor and associated resource costs.
Even if a design has only one line or arc, it may very well be exactly what
someone else needs for an analysis or as a constraint on their own design.
Information hiding of any kind has no place in the business of the future.

4.24. The Goal

The Goal, A Process of Ongoing Improvement (ISBN 0-88427-061-0,
PR9510.9.G64G6 1986 823 86-12566 by Elizahu M. Goldratt and Jeff Cox, Avraham Y. Goldratt
Institute, 57 Trumbull Street, New Haven, Ct. 06510, 203-624-9026) shatters many
traditional beliefs about how to manage a business process for maximum
market share and profit. Three parameters are important to this endeavor:
Throughput - the rate at which the system generates money through sales,
Inventory - all of the money the system has invested in purchasing parts for the

products it intends to sell, and
Operational Expense - all of the money the system spends to convert inventory

into throughput.

To make money, seek to minimize inventory and operating expenses while
maximizing the throughput of the entire operation. To accomplish this, one must
contend with dependent events (an event or series of events must occur before
another can begin) and statistical fluctuations (many events cannot be precisely
predicted). Ignore productivity of discrete non-bottleneck events. Minimize
bottlenecks (increase their throughput with additional tooling), move them to the

34

Enterprise Integration and Management Generic Process

front of the process and/or off-load them to alternate or less-efficient machines
or subcontractors. Pace the upstream process rate according to the ability of a
bottleneck to accept input from it. Pace the downstream (final assembly) rate
according to the ability of a bottleneck to produce output. Pace all processes
that run parallel with the bottlenecked process (feed final assembly) according
to the bottlenecked process. Don't waste bottleneck time on potentially bad
parts: inspect them before hand. Treat the parts that result from a bottleneck
like gold.

Process parts for latest product first. Try to meet or exceed delivery schedule to
increase customer satisfaction and potentially increase market share.
Decrease lot sizes to avoid in-process inventory and event delay (machine
inactivity due to wait for a large lot). Reduce process times:
Setup time - the time a part spends waiting for a resource while it is being

prepared to work on the part (usually a small percentage of total time).
Process time - the time a part spends being modified into a new, more valuable

form (usually small percentage of total time).
Queue time - the time a part spends in line for a resource while the resource is

busy working on something ahead of it (usually a large percentage of
total time, especially on bottlenecks).

Wait time - the time a part waits for another part so they can be assembled
(usually a large percentage of total time, especially on non-bottlenecks).

Queue and Wait time — Focus on them. Reducing lot sizes will reduce queue
and wait time (usually over half of the total time).

35

Enterprise Integration and Management Information Integration

5. Information Integration

To conduct the engineering, manufacturing and support process as efficiently
and timely as possible, a coordinating context must be established. That
context is represented in the foregoing diagram by the Plan and Manage
Engineering, Manufacturing and Support parts of the process.

To support the new business process, data is related by way of the fundamental
views of the process and the product. Product development (Program)
management views the data from the perspective of the work to be performed.
The customer views the data from the perspective of the behavior or functions
that the product is to perform. Engineering views the data from the perspective
of the systems that are devised to perform the product functions. Manufacturing
and Support view the data from the perspective of the components of the
systems and their arrangement as assemblies.

These views are respectively called the process Task Breakdown Structure
(TBS), the product Function Breakdown Structure (FBS), the product System
Breakdown Structure (SBS), the product Component Breakdown Structure
(CBS) and the product Assembly Breakdown Structure (ABS). The FBS, SBS
and ABS could also be called product behavior, engineering and
manufacturing breakdown structures, respectively.

Task AssemblySystemFunction

Component

Deliverable

Manifestation

Product

There is a lot of data associated with the specification, design and manufacture
of a product, especially one as complex as a modern air vehicle. The
relationships among the data are equally complex. With the Breakdown
Structures, the data relationships are simplified by maintaining only two
relationships for any deliverable that results from the conduct of the process.

A deliverable is anything exchanged between individuals, groups, divisions,
companies, prime- and sub-contractors or contractors and their customers.
Subtasks in the TBS are often dependent on the receipt of deliverables from
other subtasks. A deliverable is related to a bottom node in the TBS and a node
in one and only one of the other Breakdown Structures.

36

Enterprise Integration and Management Information Integration

A node in the SBS is explicitly related to a node in the FBS (this system
performs that product function). The SBS breaks down into subsystems and
components. The components break down according to their CBS. The
components are assembled into assemblies which assemble into the product.
The SBS and ABS are thereby related to one another by way of their common
components.

These relationships make it possible to navigate through the Breakdown
Structures to find any data associated with the product (FBS, SBS, CBS and
ABS) or the process (TBS) by knowing any one thing about the product or
process. Part numbers are not necessary search criteria.

Each of these Breakdown Structures and their relationships are described in
more detail in their respective sections.

5.1. Management View

The TBS is a means of coordinating the activity of many and diverse resources
throughout the process. Whether the problem is the development of a new
product or service or the modification of an old product or service, the problem
is typically decomposed into its constituent elements to make it tractable. The
TBS is a decomposition of the development process into tasks sufficiently small
that they can be performed by a single resource (human, machine, computer...).

Configuration managed by way of
versions of work packages

T1 T2

T12T11 T13 T21 T22

T112T111

T111
1

T111
11

T111
2

T111
3

T112
1

T112
2

T111
12

T111
111

W11
1111

T111
1112

T111
112

T111
122

T111
121

T221 T223

T221
1

T221
2

T223
1

T223
2

T222

T112
11

T112
12

T112
121

T112
122

T112
123

T111
1221

T111
1223

T111
1221

T223
21

T223
22

T223
23

T223
211

T223
212

T223
213

T223
221

T223
222

T223
2111

T223
2112

T223
2221

T223
2222

T223
2223

Task

Work Packages

Program

Tasks

Subtasks

Deliverables
(internal, intermediate,
customer, associate,

subcontractor...)

Projects

Time

To the top node of the hierarchy is related the name of the Program and any
appropriate attributes. The purpose of a Program is to develop a product under
contract with another enterprise or within an enterprise. Contract information is
related to this node. The customer could be the Department of Defense (DoD),
the management of an enterprise, the Marketing or Product Planning
organizations thereof, another enterprise or an individual.

To make large Programs manageable and to maximize the effectiveness of
interpersonal communications, Programs are often divided into projects. Some
projects, especially those involving changes to an existing design or product

37

Enterprise Integration and Management Information Integration

are separate contracts or subcontracts. A project typically contends with one,
but may contend with more than one portion of a product.

This portion (system, assembly or group) of a product is characterized in a work
package. A workpackage correlates with a contract or a portion of a contract
(lowest level of a Work Breakdown Structure). The costs of performing the work
are cumulated to the workpackage level for accounting or billing purposes. The
workpackage costs are cumulated to the project and program levels for project
and program management purposes. A workpackage correlates directly with
the business process and could consist of tasks that involve any portion of it.

The tasks described in the Generic Process section appear to be limited to
sequential processing from the coarse perspective of a product. When viewed
from the granular perspective of a component however, parallel processing can
be achieved. Subtasks can even be defined for portions of parts if more
parallelism is desired.

To further increase parallel processing, sequential tasks can begin before a
preceding task is completed. To mitigate the risk involved with such an
approach, the human resource responsible for a deliverable to a subsequent
task should indicate its degree of completeness. For this reason, a likelihood of
its change attribute should be associated with every deliverable.

Workpackages have milestones associated with them. They indicate the
initiation of the workpackage, the resolution of the work to be performed, the
scheduling of the work, the resolution of any resource conflicts, and all
approvals required before the work can begin. Ideally, no approvals should be
necessary. Individuals should be free to establish a workpackage or task or
subtask and begin work when they think it is appropriate.

PROGRAM
MILESTONES

System Requirements Review

System Design Review

Preliminary Design Review

o

o

o

Delineate Approve ExecuteScheduleInitiate

TASKS:

WORK PACKAGE MILESTONES:

T11 T12A

T12B

T12C

 Define Requirements

PACKAGE (CHANGE):

SUBTASKS:

WORK PACKAGE

The completion of the "final" milestone for a task in a workpackage should result
in or contribute to the completion of a Program milestone for a phase of the

38

Enterprise Integration and Management Information Integration

Program. Additional tasks are added to a workpackage to extend it to support
other Program milestones.

Associated with each activity is a resource that has responsibility for the activity.
A program manager is responsible for a Program. A project manager is
responsible for a project. A cognizant engineer is responsible for a
workpackage. A responsible engineer is responsible for a task within a
workpackage. An individual engineer or computer program is responsible for a
subtask within a task or subtask.

PROGRAM
MILESTONES

System Requirements Review

System Design Review

Preliminary Design Review

Critical Design Review

o

o

o

Delineate Approve ExecuteScheduleInitiate

TASKS:

WORK PACKAGE MILESTONES:

T11 T22T21A

T21B

T21C

T12A

T12B

T12C

T32D2

T21D1A

T21D1B

T21D1

T21D

 Define Requirements Design

PACKAGE (CHANGE):

SUBTASKS:

Task Name
Task Description
Responsible Department
Responsible Person
Planned Start Date
Planned End Date
Actual Start Date
Actual End Date
Charge Number
 o
 o
 o

Subtask Name
Subtask Description
Responsible Person/Procedure
Planned Start Date
Planned End Date
Actual Start Date
Actual End Date
Charge Number
 o
 o
 o

result from human or
computer activity

WORK PACKAGE

Work Package Name
Work Package Description
Responsible Department
Responsible Person
Planned Start Date
Planned End Date
Actual Start Date
Actual End Date
Charge Number
 o
 o
 o

Deliverables
(internal, intermediate,
customer, associate,

subcontractor...)

Associated with each activity is a description of the work. There are brief
Program, project, workpackage, task and subtask descriptions. The planned
and actual start or end dates shown in the diagram could be start dates and
durations.

39

Enterprise Integration and Management Information Integration

Work should be performed only if it results in a required deliverable to another
subtask in the process or to the customer. Associated with the lowest subtask in
the hierarchy is a definition of a deliverable and the skills needed to produce
the deliverable. The deliverable has a unique and perhaps hidden identifier, a
name, a short description and a location associated with it even before it exists.
The location is a function of the deliverable type. The location could be a
computer file name and path name or a building column number and bin
number. When something appears on a computer network or in a bin with that
unique identifier, it can readily be identified as the anticipated deliverable.

PROGRAM
MILESTONES

System Requirements Review

System Design Review

Preliminary Design Review

Critical Design Review

o

o

o

Delineate Approve ExecuteScheduleInitiate

TASKS:

WORK PACKAGE MILESTONES:

T31T11 T32A

T32B

T32C

T32D

T32E

T22T21A

T21B

T21C

T12A

T12B

T12C T33CA

T33CB

T33CC

T33CC2

T33CC1A

T33CC1B

T33CC1

T32D2

T21D1A

T21D1B

T21D1

T21D

 Define Requirements ValidateDesign

PACKAGE (CHANGE):

o o o

SUBTASKS:

Task Name
Task Description
Responsible Department
Responsible Person
Planned Start Date
Planned End Date
Actual Start Date
Actual End Date
Charge Number*
 o
 o
 o

Subtask Name
Subtask Description
Responsible Person/Procedure
Planned Start Date
Planned End Date
Actual Start Date
Actual End Date
Charge Number*
 o
 o
 o

WORK PACKAGE

Work Package Name
Work Package
Description
Responsible Department
Responsible Person
Planned Start Date
Planned End Date
Actual Start Date
Actual End Date
Charge Number*
 o
 o
 o

When the subtask is scheduled, a specific resource with the necessary skills is
committed to the subtask. Costs are forecast by multiplying the cost per unit of
time of a resource by the planned duration of its use. Actual costs are computed
using the actual resources and durations. The planned or actual durations or
costs can be cumulated up the TBS to whatever level is of interest.

40

Enterprise Integration and Management Information Integration

If more than one resource is required to produce the deliverable of a subtask,
the deliverable and its subtask should be decomposed. The decomposition can
be parallel. For example, each section of a report could be defined as a
deliverable (T1, T2, T3) and the original task changed to a compilation task
during which the sections are assembled into the originally defined deliverable.

T1

T3

T2

Task

Time

The decomposition can be sequential. For example, intermediate definitions of
a part and corresponding subtasks (operations; T1 - T5) that correspond to
individual resources can be defined. The result of all of the subtasks is the
originally defined deliverable.

T2T1 T3 T4 T5

Task

Time

The latter approach is common during the transition to production of a product.
For example, a workpiece must go through many transformations performed by
different resources before it achieves the shape defined by its design. Each
transformation results in a new, intermediate manifestation of the intended part
that must be handled and sometimes stored. Such synthetic parts or
assemblies are given a new identification (synthetic part number) at each such
step. Intermediate models of the part may be derived to help the resources
recognize when the desired intermediate physical manifestation has been
achieved (e.g., model used to establish inspection criteria).

The ability to delineate subtasks to any level of detail permits the responsibility
for many subtasks to be assigned to computers. Human and computer tasks
can be interleaved, which makes design rule checking (batch analysis
invocation), electronic mockup (model transformation invocation) and the like
practical.

Once a workpackage is initiated, defined and approved, actual work may
commence. Labor accounting numbers are accordingly displayed. Some
accounts should be provided to which exploratory work can be charged when
there is no appropriate product-related account.

If resources are compensated for their time on the basis of time worked instead
of deliverables delivered, then some form of time-based accounting is required.

41

Enterprise Integration and Management Information Integration

All labor accounting and resource utilization data may be based on the TBS
and the actual duration of subtasks performed by a resource. Labor accounting
would then be a natural consequence of performing subtasks. There would be
no need to display charge numbers for manual charging purposes. There is no
need for individuals to report the time expended by themselves or their tools.

Changes to a workpackage are limited to the originators of the information or
those who assume responsibility for it.

The lowest level subtasks are associated with one another by way of
deliverables as well as their common parent subtask or task. The deliverable
resulting from the conduct of one subtask is a required input for one or more
other subtasks.

TASKS:

T31T11 T32A

T32B

T32C

T22T21AT12A

 Define Requirements ValidateDesign

PACKAGE (CHANGE):

o o o

SUBTASKS:

Subtask Name:
Design Mechanism A
Subtask Description:
Design a mechanism to translate
the linear motion of actuator 349
into wing extension motion such
that the neither the actuator nor
the wing extension limits are
exceeded.
Responsible Person/Procedure:
Dan Designer
Deliverable (file name/type)
Mech-A , Euclid solid model
Planned Start Date: 3/4/90
Planned End Date: 3/24/90
Actual Start Date: 3/3/90
Actual End Date: 3/24/90

Subtask Name:
Structurally Validate Mechanism A
Subtask Description:
For Mechanism A assure that the
supporting structure will handle
the loads of a 30 m wing
extension (ref. flight system
launch requirement [SBS node
245]).
Responsible Person/Procedure:
Sheri Structural Analyst
Deliverable (file name/type):
Str/Mech-A , FEM model
Str/Mech-A , FEA text file
Structural analysis feedback,
Euclid model
Planned Start Date: 3/24/90
Planned End Date: 3/26/90
Actual Start Date:
Actual End Date:

Subtask Name:
Validate Hydraulics associated
with Mechanism A
Subtask Description:
For Mechanism A assure that the
hydraulic system will supply the
necessary pressure and flow rate.
Responsible Person/Procedure:
Harry Subsystems Analyst
Deliverable (file name/type)
Hydraulic simulation mode
Analysis result file
Hydraulic analysis feedback,
Euclid model
Planned Start Date: 3/24/90
Planned End Date: 3/26/90
Actual Start Date:
Actual End Date:

Subtask Name:
Electronically Validate Mechanism
A
Subtask Description:
For Mechanism A assure that the
electronic actuator control will
support intermediate wing
positioning requirements (ref.
flight system variable sweep
requirement [SBS node 247]).
Responsible Person/Procedure:
Edward Avionics Analyst
Deliverable (file name/type):
Electro-hydraulic simulation model
Electronic analysis feedback,
Euclid model
Planned Start Date: 3/24/90
Planned End Date: 3/26/90
Actual Start Date:
Actual End Date:

Deliverables
(internal, intermediate,
customer, associate,

subcontractor...)

Save
Rework

.

.

.
Save
Done

The need for explicit human action to indicate progress relative to schedule can
be avoided. Task initiation, progress and completion may be indicated by tool
invocation and file saving activity. Although file size as a function of the
deliverable type might be used as an indication of the degree of completion, a
likelihood-of-change indicator manually provided by the author of the
deliverable may be more useful to those awaiting the deliverable.

Skills provide a convenient way of establishing "soft links" between work. They
eliminate the need to categorize or abstract resources. If a subtask requires a
certain set of skills and a certain proficiency in each, then a table of resources
can be queried according to the skill/proficiency search criteria of the subtask. If
a qualified resource is available during the desired time, it can be committed

42

Enterprise Integration and Management Information Integration

(hard linked) to the subtask. If that time conflicts with a previous commitment of
that resource, then a resource conflict results.

Since first-come-first-served or who-can-yell-the-loudest may not result in
resource assignments that most benefit the enterprise, a means of resolving
resource conflicts and reassigning resources must be provided. Resource
resolution can be automated by simulating the impact of a delay in the use of
the resource on the time-to-market of each product. The estimated profit of each
product times the delay will yield the actual enterprise profit impact of each
resource assignment alternative.

The tasks required to develop each breakdown structure and the deliverables
related thereto can be inferred from a predecessor structure. From a Request
For Proposal or Product Development Plan can be inferred the tasks necessary
to prepare a proposal in response to the request.

TBS ABSSBS

RFP

1. Manually define work required
to develop proposal

FBS

Proposal

The execution of the proposal tasks results in a significant refinement of the
TBS and an initial description of product behavior in the FBS.

4.
Breakdown

product
behavior

TBS ABSSBSFBS

3. Manually define work necessary to satisfy RFP

Proposal

43

Enterprise Integration and Management Information Integration

Given the product behavior, the tasks necessary to define and allocate the
system requirements, and design the systems and their components according
to those requirements are obvious.

5. Knowing that systems must be defined to perform the
product functions, delineate the requirements

definition/allocation and systems design work accordingly

6. Define
systems

TBS ABSSBSFBS

Given the product systems and components, the tasks necessary to arrange
them within the constraints of the external and internal mold lines are obvious.

TBS ABSSBSFBS

8. Arrange
components

7. Knowing that the system components must be
packaged, define the work accordingly

Given the arrangement of the components and their assemblies, the tasks
necessary to manufacture and support them are obvious.

9. Knowing the component arrangement and assembly sequence, define
the fabrication, inspection, assembly and test work accordingly

10. Fabricate
and inspect
components

and test
assemblies

TBS ABSSBSFBS

44

Enterprise Integration and Management Information Integration

5.2. Customer View

Product requirements are qualitatively described in terms of the behavior or
function a product is expected to perform. The function of a product should be
broken down to the extent that product functions can meaningfully be converted
to system requirements. For example, the qualitative functions of a computer
might be: transport continentally and operate in an office environment.

Configuration managed by way of
versions of functions

F1 F2

F12F11 F13 F21 F22

F112F111

F111
1

F111
11

F111
2

F111
3

F112
1

F112
2

F111
12

F111
111

F111
1111

F111
1112

F111
112

F111
122

F111
121

F221 F223

F221
1

F221
2

F223
1

F223
2

F222

F112
11

F112
12

F112
121

F112
122

F112
123

F111
1221

F111
1223

F111
1221

F223
21

F223
22

F223
23

F223
211

F223
212

F223
213

F223
221

F223
222

F223
2111

F223
2112

F223
2221

F223
2222

F223
2223

Function

Deliverables
(internal, intermediate,
customer, associate,

subcontractor...)

Versions of product functional definitions should be managed such that product
versions can be traced to them. Requirements, operational analyses and
mission analyses exemplify some of the deliverables that would be associated
with the nodes of a FBS.

45

Enterprise Integration and Management Information Integration

The FBS is not a simple hierarchy. It is a network of elements with Boolean
options and time dependencies. It is the definition of product behavior to the
level of detailed operations.

Ascent into
orbit

injection
1.0

Checkout
and

deploy
2.0

Transfer to
OPS orbit

3.0

Perform
mission

operations
4.0

Transfer to
STS orbit

6.0

Retrieve
S/C

7.0

Renter and
land

8.0

Contin-
gency

operations
5.0

or

FIRST LEVEL: FLIGHT MISSION

Provide
orbit main

4.4

Receive
CMD

(hi-gain)
4.5

Receive
CMD

(OMNI)
4.6

Acquire
P/L data

4.8

and

Store/
process

CMD
4.7

Transmit
payload &

subsystem
data

4.10

Transfer to
STS orbit

(6.0) Ref.

Acquire
subsystem
status data

4.9

(3.0) Ref

Provide
electrical

power
4.1

Provide
attitude

stabilization
4.2

Transfer to
OPS orbit

Provide
thermal
control

4.3

and

or

Transmit
subsystem

data
4.10

or

SECOND LEVEL: 4.0 PEFORM MISSION OPERATIONS

5.3. Engineering View

As product functions are defined and decomposed in the FBS, the qualitative
behavior can be converted to quantitative system requirements appropriate for
the fidelity of the design effort, and can be correspondingly defined and
decomposed in the SBS before a design effort is begun. For example, the
quantitative system requirements for a computer that is sold in the united States
and operates in an office environment might be:

non-operating temperature = -20 to 180 degrees F,
non-operating shock load = 5g in vertical axis and 3g in the lateral axes,
operating temperature = 50-80 degrees F,
operating shock load = 2g in vertical axis and 5g in the lateral axis.

46

Enterprise Integration and Management Information Integration

This gives designers constraints and analysts a measure by which the design
can be validated.

S1 S2

S12S11 S13 S21 S22

S112S111

S111
1

S111
11

S111
2

S111
3

S112
1

S112
2

S111
12

S111
111

S111
1111

S111
1112

S111
112

S111
122

S111
121

S221 S223

S221
1

S221
2

S223
1

S223
2

S222

S112
11

S112
12

S112
121

S112
122

S112
123

S111
1221

S111
1223

S111
1221

S223
21

S223
22

S223
23

S223
211

S223
212

S223
213

S223
221

S223
222

S223
2111

S223
2112

S223
2221

S223
2222

S223
2223

System

Components
(lowest level

definition
available)

Systems

Instances of same system or component

C111
1111

1

C111
1111

2

C111
1111

3

C111
1112

1

C111
1112

2

C111
1221

1

C111
1221

2

C111
1223

1

C111
1223

2

C223
2112

1

C223
2112

2

C223
2221

1

C223
2221

2

C223
2221

3

C223
2221

1

C223
2221

1

Configuration managed by way of
versions of systems

Deliverables
(internal, intermediate,
customer, associate,

subcontractor...)

The text and two-dimensional graphic deliverables that define system
requirements are intitially associated with the nodes in the SBS that correspond
with the nodes in the FBS. A link is manually established between the
descriptions of behavior and the systems they specify.

S1 S2

S12S11 S13 S21 S22

S112S111

S111
1

S111
2

S112
1

S112
2

S221 S223

S221
1

S221
2

S223
1

S223
2

S222

System

F1 F2

F12F11 F13 F21 F22

F112F111

F111
1

F111
2

F111
3

F112
1

F112
2

F221 F223

F221
1

F221
2

F223
1

F223
2

F222

Function

S112
3

many functions to one system

many systems to one function

one to one

The FBS would be a satisfactory means of organizing the system requirements
were it not for the degradation of the one-to-one relationship between product
functions and systems into a many-to-many relationship as system design
progresses. Designers often realize that if they make a system perform one
more operation, it could perform two functions. A set of three systems to perform
two functions may make more sense. If two instances of the same system are
required to perform two functions, the quantity of the same part is increased.
Larger part quantities usually lower per unit cost. These are two reasons for
maintaining a SBS as a separate view of a product. A third reason is
automated packaging.

47

Enterprise Integration and Management Information Integration

The manifestations of the systems (schematics and other two-dimensional
models, wire frame, surface and solid three-dimensional models) are
deliverables that should be related to the same node in the SBS to which the
system requirements are related.

output= 42 gph
input = 1.5 hp

output = 1 hp

System Manifestation
(Schematic)

Input = 38 gph System Attributes
compressor turbinevalve

type = gate
size =n 3.5 in

S223
21

S223
22

S223
23

A system may have many manifestations. Early in the design, a simple
schematic may be an adequate definition of a system for validation purposes.
For example, the impact of the pipe run on the analysis may be small compared
to other parameters, so simplifying assumptions about pressure losses can be
made. The attributes of the components shown in the schematic may be
sufficient for an analysis to compare various system designs to determine which
is the better approach (trade study), and worthy of refinement.

As more accurate analyses are required to improve the confidence that the
system design will, in fact, meet the requirements, more detailed system
manifestations are required. The fidelity of the design and analysis data
increases.

System Manifestation
(Layout)

S223
26

S223
28

S223
27

S223
23

S223
25

S223
22

S223
24

S223
21

At any point in time, the lowest level in the SBS is a component. It may only be
the most detailed breakdown of a system available at the time (engine), or it
may be a system that will be purchased as an assembly and never
disassembled, or it may truly be an indivisible component, which cannot be
disassembled without damage. The further breakdown of systems that are
purchased as assemblies can be had from the manufacturers of those systems.

48

Enterprise Integration and Management Information Integration

The SBS is not a simple hierarchy. It is a complex network of interrelated
systems.

S112S111

S111
1

S111
2

S111
3

S112
1

S221 S223

S221
1

S221
2

S223
1

S223
2

S222S21

System

Electronic
System

Hydraulic
System

Mechanical
System

Structural
System

Electrical
System • • •

S112
1

S112
2

S111 S22S22

S112
1

S112
2

S21

To simulate or test systems at each level in the SBS properly, the
interdependencies among the components of the systems must be defined.
The interdependent components can be included in the simulation or test, or
their effect on the system may be estimated and simulated.

To Electronic System from position sensor

Mechanical System

Aerodynamic System
(swing wing)

Structural System

Structural System

To/from Hydraulic System

Hydraulic System - Actuator

Connection
Feature

Connection
Feature

Connection
Feature

Consequently, connectivity information is maintained in the SBS exclusive of
any spatial (position and orientation) information.

The maintenance of an SBS as an engineering view distinct from a
manufacturing view is normal for software and electronic systems, but unusual
for structural, mechanical, electrical, hydraulic, fuel and other systems. It is often
erroneously concluded that the components of a system must be adjacent to
other components or located in certain areas of a product. Then it is wondered
why structural products typically grow during their development when electronic
systems shrink. For example, if an airplane is to fly farther, its fuel capacity must
be increased, which adds weight, so the wings must be larger, which adds
weight and drag to the extent that the engines must be bigger...

49

Enterprise Integration and Management Information Integration

One reason why electronic systems shrink is because the connectivity of
electronic components is defined before packaging decisions are made.
Automated packaging software is then used to position and orient electronic
components on a circuit board of a specified shape and size such that the
copper required to connect the components and the printed circuit board area is
minimized. Other criteria like maintaining a minimum component separation
distance for assembly or maintenance purposes, or keeping thermally sensitive
components away from hot components, can be used to further constrain an
automated packaging tool.

Even for the relatively simple two-dimensional case of packaging circuit boards,
automated packaging tools tax computing resources. Three-dimensional
automated packaging tools will have to contend with many more constraints
and much more complex interrelationships. For example, fuel lines should
have routing priority over wire harnesses, assemblies should be oriented to
minimize connection lengths, less reliable components should be located
where they are more accessible.

Besides having to accommodate a third spatial dimension, an automated
packaging tool should accommodate a fourth dimension – time. In anticipation
of the time when computing technology and tools will be adequate to the task of
three-dimensional automated packaging, the connectivity of the system
components must be maintained separate from their position in assemblies.
Until then, this separation of systems and assemblies will promote better
manual packaging of products.

5.3.1. Part Attributes (SBS)

Associated with the systems, subsystems and components are part attributes.
Part attributes are those characteristics of a part that do not change from
instance to instance (use) of a part in the product. Shock, vibration, thermal,
electromagnetic interference, electromagnetic pulse and other system
specifications for each operating environment and volume and aggregate
weight are typical of system and subsystem part attributes. These are properly
associated with the SBS node of a system or component. Working fluid, valve
or potentiometer settings are subsystem part attributes when there is only one
instance of them or all instances are the same. Material is a common
component part attribute.

50

Enterprise Integration and Management Information Integration

5.3.2. Part Instance Attributes (SBS)

Serial number is a common system, subsystem and component part instance
attribute, because its value must vary from instance to instance. Working fluid,
valve or potentiometer settings may be part instance attributes if, in fact, they
vary among their instances in the product. System specifications may also be
instance attributes because they may specify the valve or potentiometer
settings.

PART ATTRIBUTES

PART INSTANCE ATTRIBUTES

System

weight,
valve setting,
function test

potentiometer setting,
function test
thermal specification

Two instances of system S456

Two instances of component C234

5.4. System and Manufacturing View

Components are common to the bottom nodes of both the SBS and the ABS.

AssemblySystem

51

Enterprise Integration and Management Information Integration

Consequently, they link the two Breakdown Structures.

A111
1

A111
11

A111
122

A223
2

A111
1223

A223
23

A223
211

A223
222

A223
2111

A223
2112

A223
2223

Assembly

S11 S22

S111
1

S111
11

S111
111

S111
1111

S111
1112

S111
112

S111
122

S223
2

S112
12

S111
1221

S111
1223

S223
211

S223
222

S223
2111

S223
2112

S223
2221

S223
2223

System

C111
1111

1

C111
1111

2

C111
1111

3

C111
1112

1

C111
1112

2

C111
1221

1

C111
1221

2

C111
1223

1

C111
1223

2

C223
2112

1

C223
2112

2

C223
2221

1

C223
2221

2

C223
2221

1

C223
2221

1

A111
1111

A111
1221

A223
2221

C223
2221

3

52

Enterprise Integration and Management Information Integration

The components themselves breakdown into primitive solid objects in solid
models or surfaces in surface models or lines in wire frame models. Solid
models are the least ambiguous. The portions of the primitive solid objects that
define the exterior of a part are the boundary elements of the part. The
boundary elements are comprised of edges, which define the surface bounded
by the edge. The edges are comprised of a chain of lines or curves. The order
of those lines or curves indicates the direction to the interior of the part.

*-

U
*

Poylgonal and/or
exact Boundary
Representation

Constructive
Representation

Solid

X 2

*-

U
*

53

Enterprise Integration and Management Information Integration

Geometric modeling systems usually maintain both representations. The
constructive solid geometry (CSG) representation is better for editing purposes.
The boundary representation (B-rep) is better for display and feature definition
purposes. Features can be used to designate which surfaces of a part are
connected to other parts of other systems. They can be used to designate
loaded surfaces and load points for stress analysis. They can be grasping by a
robot, clamped for a machining operation, measured during an inspection
operation. They can designate what surface will have what finish or treatment
(paint) or tolerance. (Features are often what arrows point to on drawings.)

U* U*

U*

Feature name = slot
Attribute name = surface finish
 value =±0.001
 units = inches
Attribute name = fabrication cost
 value =30.356
 units = dollars
 •
 •
 •

54

Enterprise Integration and Management Information Integration

5.5 Manufacturing View

Flight control, fuel or hydraulic systems cannot be assembled as complete
systems before being installed as part of the product. Instead they must be
assembled along with the components of other systems into subassemblies,
until the product is assembled. Some systems cannot exist in a usable or
testable state until most of the product is assembled, and all of the necessary
electrical, hydraulic and fuel connections have been made.

System Manifestation
(Layout)

S223
26

S223
28

S223
27

S223
23

S223
25

S223
22

S223
24

S223
21

Assembly Manifestation
(Installation)

A223
224

P1

C223
223

A223
222A223

213

A223
213

C223
2245

C223
232

C223
233

A223
221

C223
225

C223
2124

C223
2221

C223
2222

C223
2223

C223
2243

C223
2241

C223
2121

C223
2122

A223
212

C223
2123

C223
2242

C223
2132
X 4

C223
2131

A223
211

A223
231

A223
23

A223
22

A223
21

As the systems are shown to provide the desired functionality, the optimum
arrangement of their components within weight, balance, ease of assembly and
maintenance constraints is determined. Then the components are grouped into
reasonable assemblies and the assemblies are carved into reasonable
subassemblies. Additional components, like the pipe flanges (C222124,
C223235, C223245, C223233) may be required solely for mating system
components that are part of different manufacturing assemblies.

55

Enterprise Integration and Management Information Integration

It is in the ABS that the spatial relationships (position and orientation) of the
components and the sequence of their assembly are maintained.

Configuration managed by way of
end item, article and event of
assemblies and components

A1 A2

A12A11 A13 A21 A22

A112A111

A111
1

A111
11

A111
2

A111
3

AS11
21

A112
2

A111
12

A111
111

A111
1111

C111
1111

1

C111
1111

2

C111
1111

3

C111
1112

1

C111
1112

2

A111
1112

A111
112

A111
122

A111
121

A221 A223

A221
1

A221
2

A223
1

A223
2

A222

A112
11

A112
12

A112
121

A112
122

A112
123

A111
1221

A111
1223

A111
1221

C111
1221

1

C111
1221

2

C111
1223

1

C111
1223

2

A223
21

A223
22

A223
23

A223
211

A223
212

A223
213

A223
221

A223
222

A223
2111

A223
2112

C223
2112

1

C223
2112

2

A223
2221

A223
2222

A223
2223

C223
2221

1

C223
2221

2

C223
2221

3

C223
2221

1

C223
2221

1

Assembly

Components

Assemblies

Instances of same assembly or component

C223
2221

11

C223
2221
12

A223
221/2

Synthetic Part

Synthetic Assembly

Deliverables
(internal, intermediate,
customer, associate,

subcontractor...)

As system definitions are augmented by assembly definitions, parts that were
originally conceived to be single castings (A223233 in the previous diagram)
may instead be assembled from many component parts (C2232131 and four
instances of C2232132). Neither they nor the pipe flanges should be treated as
synthetic parts.

If the system shown was originally defined as one manufacturing assembly
(S223) by the design function, and the manufacturing function had to, in fact,
install it as three assemblies (A22321, A22322 and A22323), then the
additional part hierarchy indenture level caused by the existence of the three
intermediate assemblies could be maintained as a synthetic assembly.
However, in the context of concurrent engineering, the design should reflect
these manufacturing realities. In the event a change must be made after a
design is released for production, the change process should be responsive
enough to insure that such synthetic assemblies do not persist for long before
they are incorporated into the design. There they can be identified as part of a
system and involved in a re-analysis of the system, if necessary, to determine
their impact on the performance of the system.

Intermediate parts, like workpieces and incomplete parts on their way to
becoming deliverable parts, will persist as synthetic parts. Some assemblies,
like those awaiting painting or labeling, will persist as synthetic parts. Most of
the intermediate assemblies that are commonly treated as synthetic assemblies,
however, should be incorporated into the design of the product.

5.5.1. Part Identification

Material will go through many transformations before it becomes a component
part (cut from raw stock, face, profile, pocket, drill, weld, etc.). Although Just-In-
Time is a goal, some of these synthetic parts will have to be temporarily stored.

56

Enterprise Integration and Management Information Integration

Consequently, synthetic parts or at least their bins must be uniquely identified
with synthetic part numbers. These numbers are what distinguish as-designed
parts from as-planned parts. Associated with each transformation is an
operation. Operation instructions are found in process plans. Synthetic part
numbers should be the process plan number (as-designed part number)
concatenated with the operation number.

The following is a comprehensive way of uniquely identifying parts throughout
their evolution.

Material ID = Raw Material ID + Material Process ID + Supplier ID

Component ID* = Fabrication Process ID + Component Model ID
 + Material ID

Component Model ID + version
Fabrication Process ID + version
Supplier ID

Assembly ID* = Assembly Process ID + Assembly Model ID + Supplier ID

Raw Material ID + version
Material Process ID + version
Supplier ID

Assembly Model ID + version = Component/assembly position/orientation

Assembly Process ID + version
Supplier ID

Assembly

Assembly Assembly

test test

test

Product

assembleassemble

assemble

Component

inspect

fabricate Model

Material

process

Raw Material

Position/
orientation

•
•
•

Position/
orientation

Source

Identity

Source

Usage

* = Complete part number

5.5.2. Part Attributes (ABS)

Component or assembly identification and End Item (product model) numbers
are part attributes. The supplier of the part may be a part attribute if all
instances of the part in the product were provided by the same supplier.

57

Enterprise Integration and Management Information Integration

5.5.3. Part Instance Attributes (ABS)

Part instance attributes are those characteristics of a part that are different for
one or more instances of the part in a product. Since no two parts can occupy
the same space, component and assembly position and orientation relative to
the next higher level of assembly, are part instance attributes. If more than one
supplier provides the same part for various instances of it in a product, then the
supplier name is a part instance attribute. When more than one instance
(Article) of a product is involved and their configurations begin to differ, then
Article and Event are part instance attributes.

shock, vibration, thermal, EMI
and EMP specifications

Assembly Two instances of assembly A221

Two instances of component C223221

part number, nomenclature,
supplier FSCM number(s),
end item, article, event
position, orientation,
material, heat treatment,
handling specification, fit
test, form test ...

PART ATTRIBUTES

PART INSTANCE ATTRIBUTES

5.6. Support View

The support view is a combination of the customer (FBS), engineering (SBS)
and manufacturing (ABS) views of the product. In the FBS is found the mission
statement and the environmental characteristics. From the environmental
characteristics, sources of damage may be surmised and quantified. System
definitions and dependencies can be found in the SBS. They provide the
information needed for fault detection and isolation. The ABS provides the
information needed to determine what must be removed in what order to repair,
refurbish or otherwise maintain the product.

58

Enterprise Integration and Management Information Integration

5.7. Data Amount and Fidelity

The amount of data grows through the life of a product. The fidelity of the
product definition data increases throughout the engineering phase of a
product. The development of the Breakdown Structures is neither parallel nor
sequential. The level of definition detail of the ABS will lag that of the CBS,
which will lag that of the SBS, which will lag that of the FBS.

Time

Data
Fidelity

and
Completeness

Conceptual
Development

Preliminary
Development

Detail
Development

FBS

SBS

CBS

ABS

59

Enterprise Integration and Management Information Integration

5.8. Derivatives

Various manual and computer-augmented means are used to create and
disseminate the text, 2-D graphics, 2-D models and 3-D models used to define
and communicate the product definition among people and computers
throughout the process. Examples of the various models involved in the
process are depicted as computer files in the following diagram. Some are
related to one another by way of the Function, System and Assembly
Breakdown Structures. Others are copies of models used for one purpose,
which have been modified or used as a constraint for models derived for
another purpose. Many deliverables may be derived from other deliverables.

system
requirements

product
spec.

test
plan

analysis
results

3-D
model

exact boundary
representation

2-D
modeltextbinary

schematic

FEM

test
results

thermodynamic
model

machine
control
data

cutter
centerline

manufacturing
model

system
design
model

functional
flow

diagram

constructive
representation

polygonal boundry
representation

component
design
model

assembly
on demand

NC
program

+ spatial data for
assembly =

60

Enterprise Integration and Management Information Integration

This chain of relationships from manifestations to derivatives of manifestations
to derivatives of derivatives, must be maintained if the cost of a proposed
change is to be accurately assessed. Only then will all items that may be
affected by a change to a manifestation be known. Only then will all items that
may be affected by a change to a requirement that affects a manifestation be
known. Only then will what needs to be changed be known should a change be
approved.

Deliverable

Manifestation

Derivative

Derivative

5.9. Tool Used

The knowledge of what tools were used to create or modify a manifestation or
derivative must be maintained. Then in the event that it is belatedly discovered
that a revision of a software tool was corrupting data, the corrupted data can be
quickly isolated.

Deliverable

Manifestation

Tool

Derivative

Derivative

61

Enterprise Integration and Management Information Integration

5.10. Physical Location

Whether to repair or discard bad deliverables, or find them for use in the
process, the physical location of each deliverable should be known. For this
purpose, a fourth link to each deliverable is required.

Deliverable

Manifestation

Physical Location

Derivative

Derivative

5.11. Data Navigation

Only five relationships must be maintained for each deliverable. One is to the
lowest subtask in the TBS that defined and authorized the work to create the
deliverable. A second is to the breakdown structure (FBS, SBS, CBS or ABS)
to which the deliverable is most reasonably related. The third is to the
deliverables that were derived from it. The fourth is to the tool that was used to
create it. The fifth is to its physical location.

Task AssemblySystemFunction

Feature

Component

Deliverable

Manifestation

Physical Location Tool

Derivative

Derivative

Product

These relationships establish the simplest method known of navigating
throughout all the Program and product data generated throughout the life of a
product. A part number is not required to find information. Knowing any one bit
of information will lead to any other bit of information.

62

Enterprise Integration and Management Information Integration

5.12. Configuration Management

There will likely be versions of the deliverables, derivatives, the tools used to
make them and the Breakdown Structures used to relate them. Some changes
will be effective on different parts of a product. Other changes will be effective
during different parts of its life. Consequently, the configuration management of
the product must include all the data structures and tools used to define,
manufacture and support the product.

63

Enterprise Integration and Management Resources

6. Resources

The resources needed to conduct the process are a function of the product.
They may be many and varied. Like the information hierarchies, there could be
resource hierarchies, but they are of little value.

Computing Tools

Resources

Humans Machines Facilities

Floor space ElectricityMill Wave solderMachinistEngineerNASTRANHammerNetwork Memory ……………

All resources should be characterized only by their skills, their proficiency in
each skill and the cost per unit time of their use. Every resource has a set of
skills and a proficiency in each skill.

Skill Proficiency

Skill Proficiency

Skill Proficiency
Skill Proficiency

Resource

6.1. Computing Resources

Computing resources include everything related to computers and their
communications. Computers are are a particularly pervasive resource.
Computers consume facility resources. The facility resource costs and
computer maintenance costs are the recurring costs for a computing resource.
Computers have memory, permanent storage, processing and network access
skills. They have memory and permanent storage proficiencies in terms of its
size (Mbytes) and speed (transfer rate). They have processor proficiencies in
terms of size (word length) and speed (MHz). They have network proficiencies
in terms of size (band-width) and speed (Mbits/sec).

6.2. Tool Resources

Tool resources are those which are used by other resources to produce a
deliverable. Human resources use hand tools, like hammers. Machines use
machine tools like a horizontal cutter or a holding fixture. Both may use
software tools, but human resources dominate the use of interactive software
tools. A hammer has hitting, peening and fastener removal skills. A hammer
has a hitting proficiency in terms of moment arm (handle length), head weight
and impact area. A NASTRAN computer program tool has static and dynamic
finite element analysis skills. Its proficiency is described in terms of the size of
the model it can analyze and the speed with which it can perform the analysis
on a nominal computing resource.

64

Enterprise Integration and Management Resources

6.3. Human Resources

Human resources are critical to the functioning of all the resources. They make,
buy, install, invoke, use and maintain all of the other resources. Human
resources have mechanical design, analysis documentation and tool use skills
and proficiencies in each.

The information about who is doing what with what resource is cumulated up
the management hierarchy. The higher managers have wider perspective, but
less detail. The information they receive must be filtered and compressed.
They do not have the time to understand it to the detail necessary to make an
informed decision. Those on the bottom who are intimately aware of the details
have a limited perspective. They usually do not have the authority to make
decisions. When they do, their lack of scope may lead to bad decisions,
because they are unaware of the business strategy.

After peeling away the layers of symptoms that obscure the real problems, at the
core of every problem is a lack of personal freedom. In many instances,
company policies are dictated by government regulations that required the
aerospace industry to be costly and wasteful. Literally, an act of Congress is
needed to make the simplest of process improvements. In most instances
however, imaginary company policy or government regulations are used as
excuses to avoid change. When this fallacy is challenged, a layer of
organizational or people excuses is proffered to avoid change. People fight to
stay in a rut about which they bitterly complain. It can take the demise of the
company to induce real change.

6.4. Machine Resources

Machine resources are the mills, lathes, material handling, component
placement and test equipment and the like. Manual machines consume human
resources. Automated machines consume computer and human resources.
Both consume facility resources. Milling machines have material removal skills.
Their proficiency is described in terms of number of axes of motion, the speeds
of those motions, maximum travel, bed size, cutting power and speed.

6.5. Facility Resources

All of the other resources are dependent on one or more facilities resources.
Facilities resources have physical support (land), protection (enclosure),
cooling, heating and electrical power skills and proficiencies in each (enclosure
area, volume, cooling capacity, etc.).

6.6. Resource Correlation

Each task requires a set of skills and the proficiency necessary to accomplish
the task (produce a deliverable) on time and at minimum cost. When there is no
direct correlation between the skills and proficiency of a resource and the skills

65

Enterprise Integration and Management Resources

and proficiency needed to produce a deliverable, a combination of resources
are required to produce the deliverable. When this circumstance is recognized,
the task must be decomposed into discrete subtasks for each resource as
described in the Information Integration section. In that way, resources will be
explicitly correlated with each other by way of the deliverable dependency
among the subtasks.

This relationship provides the basis for determining the value of the correlation
of resources by their physical proximity (relative location). Resources that
directly transfer deliverables should be physically adjacent to minimize the cost
of transfer. For digital deliverables, the transfer cost is low, regardless of the
distance. For immobile resources, the information is only useful for determining
the cost of the process. However, if the process cost is high enough and the
duration of the subtask is long enough, even resources determined to be
immobile should be moved.

6.7. Resource Evolution

All resources are acquired or developed, improved or at least maintained and
retired or destroyed. Nearly all resources can

gain skills (machine operation or in-process inspection probe),
gain proficiency in old skills (advanced accounting class, new bearings),
lose skills (loss of memory skill due to stroke or disk drive failure) and
lose proficiency (poor response due to degraded eyesight, or backlash of warn gears).

Some skills become rare or otherwise increase in demand. Others are no
longer useful to the process. Consequently, the amount that can competitively
be charged for the time of a resource varies throughout its evolution.

6.8. Resource Value

To determine accurately the price of a product given a desired profit, or vice
versa, its cost must be known. The cost of a product is that of its raw materials
and all the resources employed to convert the raw materials into a viable
product. The cost of a resource is its acquisition cost distributed over the
expected useful life of the resource plus its recurring cost. The recurring cost of
a resource is a combination of its maintenance (wages, oil), repair (medical,
replacement parts) and improvement (training, enhancements) costs. The
acquisition and installation costs of human resources are low compared to their
recurring costs. The opposite is more nearly true of all other resources. There
are two approaches to resource valuation.

6.8.1. Authoritarian Approach

The use of resources described in the Information Integration section is from the
conventional perspective in which an enterprise effectively owns and directly
controls all of its resources. Resources are assigned to perform tasks. In this
case, the value of the resources is a function of their acquisition and recurring
costs. Their value is not a function of their demand (annual merit increases do

66

Enterprise Integration and Management Resources

not accurately reflect current value). This valuation method results in over- or
under-utilization, unless a resource management tool like that described in the
Tools Resources section is employed. The resource management tool must be
continually updated with current resource availability, skills and proficiency if it
is to be of value.

Without such a sophisticated Resource Manager, the true cost of resources are
not accurately known. Hence, the true cost of the product and the profit are not
accurately known. Seemingly inexpensive resources may in fact be very
expensive when their less obvious costs, like medical expenses, early burn-out,
maintenance personnel on overtime and poor product quality are considered.

6.8.2. Libertarian (Free Market) Approach

The resources of commercial suppliers are indirectly controlled by their
customers by the price the customers are willing to pay for the products or
deliverables that result from the use of those resources, or the price the
suppliers are willing to bid to supply the deliverables. The value of the
resources of a supplier change as a function of the price the supplier can
demand for their use. As the price rises, other suppliers are attracted to the
same market. The additional supply forces the original suppliers to reduce the
price of their products in competition with the new suppliers, effectively reducing
the value of the resources involved.

As the price declines, suppliers who find the price unprofitable leave the market,
reducing supply. This establishes the potential for a price increase by the
remaining suppliers should the demand for the deliverables remain or increase.
Others invest in improved resources to maintain or increase their profits at the
lower price.

The more successful enterprises try to commit their suppliers to low prices over
the life of the deliverables. This approach can backfire if the resource costs of
the supplier rise to the extent that the supplier can no longer afford to supply the
products as contracted. A viable price/supply balance can only be achieved in
a free-market environment where the prospect of late, poor quality or no
deliverables is less likely.

A free-market approach to resource valuation and allocation can be applied to
the resources of an enterprise if the principle of private property is employed.
By selling, leasing or renting the non-human resources of the enterprise to its
human resources, the human resources can competitively bid for work for
themselves and their resources. Supply and demand will not only guarantee
the minimum price for the deliverables, but also cause the true cost of the
resources to be accurately reflected in the price of the deliverables. If the bids
for some work are high compared to external commercial alternatives, then
additional or more productive resources can be acquired to increase the
internal supply. Otherwise the deliverables should be bought from the external
supplier.

67

Enterprise Integration and Management Resources

This approach eliminates the need for a sophisticated Resource Management
tool and the cost of its maintenance. All that is really needed is a way to
communicate market (Program) needs to the human resources. The Task
Breakdown Structure (described in the Information Integration section) is adequate for
that task.

68

Enterprise Integration and Management Computing Resources

6.9. Computing Resources

The computing resource technology changes so rapidly that new products
appear daily. It is futile to try to provide a specific description of computing
resources. This qualitative description should suffice to guide those
responsible for the acquisition, installation and maintenance of computing and
related resources.

6.9.1. Requirements

The business process must quickly adapt to new products. Consequently, the
computing resources of an enterprise must quickly adapt to the needs of its
business process. This adaptation should be in the smallest units practical to
minimize the possibility of excess computing capacity, and therefore excess
cost, or insufficient computing capacity, and therefore inadequate support of the
process.

Computing resource changes should minimally impact the users of those
resources, and therefore minimize training costs. To further reduce training
costs and maximize productivity, the use of the computing resources should be
intuitive or automatic. They should be optimized for their users. The
responsiveness of the computing resources should be consistent such that they
do not disturb the thought process or timing of its human or non-human users,
respectively.

Computing resource changes should also minimally impact the facility
resources, and therefore minimize computing resource relocation costs. Since
most facility resources must accommodate human resources, the computing
resources should be compatible with human resources and vice versa. No
special environmental control (temperature, humidity, sound), power supply,
structural support or structural rigidity or damping should be required to support
the computing resources. Doorways and elevators, as well as cooling
requirements, limit the size of the computing resources.

The value and volatility of the data and tools (application programs) residing on
the computing resources is such that it is advisable to have at least one copy
stored on a geographically remote computing resource.

The deliverables developed on a computing resource by one function in the
process must be shared with other functions by way of their computing
resources. If process schedule or timing requirements dictate that computing
resources are to process subtasks cooperatively (distributed parallel
processing), they must also share control information. The sharing of control
information is also required if the activities of tool and human resources are to
be interleaved with those of computing resources. This necessitates a means of
communicating deliverables and control information among computing
resources. The Task Breakdown Structure described in the Information section
can contain all the control information and the metadata about the deliverables

69

Enterprise Integration and Management Computing Resources

necessary to support such cooperative processing. The deliverables can be
found by way of the other Breakdown Structures as well.

Conversely, computing resources must be capable of performing a minimum set
of skills and proficiencies because they may be isolated from the other
computing resources. Such isolation may be done accidentally due to a
resource failure, or intentionally should the nature of a deliverable or software
tool be such that it cannot be made accessible to other resources (classified).

6.9.2. Architecture

The requirements may be met with a collection of networked computers.
Neither the computers nor the network components will likely be made by the
same manufacturer. It will be a heterogeneous environment of computing
resources.

The relationship of computing resources to the other resource types is
represented in the following diagram.

TOOL RESOURCES

MACHINE
RESOURCES

FACILITY RESOURCES

HUMAN RESOURCES

COMPUTING RESOURCES

This diagram uses adjacency to show how the computing resources interact.

6.9.3. Communications

Until brain-to-brain communication is viable, some combination of sight, sound,
touch, motion, position and orientation must be exchanged among human
resources for effective communication to occur. Sight includes images
(photograph), simulated images (shaded solid or surface models with shadows,
reflections and other effects), wire frame models, graphics or text. The sights
may be animated (video or computer simulation). Sound includes voice, music
and noise (cutter chatter). Sound cannot exist without a time domain. It is
always 'animated'. Touch includes pressure, temperature, humidity and
vibration cues. Motion is the feeling of velocity (hair movement, temperature
differential due to uneven evaporation of sweat) and acceleration or

70

Enterprise Integration and Management Computing Resources

deceleration (inner ear and joint movement). Position and orientation are
derived from a combination of sight, sound, touch and motion cues.

If the human resources are remote from one another, their communication must
be converted to a medium that can be transmitted over their intervening
distance. The communication may be converted to analog signals and
transmitted by way of copper wires, optical cable, the atmosphere or satellites.
To avoid distortions due to interference, the analog signals may carry digital
information. Digital data may be checked and corrected to insure that what was
sent was received.

With the right peripherals, it is currently possible to communicate sight, sound,
touch, motion, position and orientation. Sight can be communicated using
various computer, video and holographic displays. Sound can be
communicated using audio speakers. Touch can be communicated using
actuators, blowers and radiant or piezoelectric heating and cooling devices.
Motion can be communicated using visual cues, but true motion can be better
communicated using a six degree of freedom flight simulator. Position and
orientation can be communicated verbally if an experience has been shared
(northeast corner of Hollywood and Vine looking south).

If computers are in the communication path, the information must be in digital
form. Analog signals like voice or video must be digitized into discrete values
over a time domain.

The bandwidth of the communication medium may not allow the communication
to occur in "real-time," so the information must be stored, reconstructed and
presented later than its actual occurrence. The information may be compressed
and decompressed to get more information through a limited band width
communication medium. Even with data compression and decompression,
real-time communications may not be possible or practical.

Not all forms of communication are practical or necessary for the design and
manufacture of a product. In the interest of cost, one must always ask, "What is
the minimum communication technology needed to communicate the necessary
information unambiguously within a time that will not distort the information or
make it too costly?"

Processing consistency is important to human and machine users of a
computing resource. If a distributed heterogeneous computing environment is
involved, digital data must be accessible by physically remote computers. The
software tools used to process the data must be similarly accessible. The
execution of the tools on the data should proceed as if they were local
resources. Consequently, the network should have sufficient capacity
(bandwidth) to function as though the computers were directly (channel)
connected.

71

Enterprise Integration and Management Computing Resources

6.9.3.1. Interaction Methods

There are various ways computer resources can communicate: master/slave,
client/server and peer-to-peer. Each is discussed briefly here.

6.9.3.1.1. Master/Slave

This is the classic multi-user environment in which dumb terminals rely entirely
on the services of a "mainframe" or "host" computer. As its name implies, it isn't
much fun for the human resources, who must compete with their peers for host
cycles. When the host "goes down," so does everyone.

Obstructive access and data security mechanisms must be employed to protect
the investments of users from other users. A utilization charge rate based on
CPU, memory, disk access/storage and printer output is required to minimize
over-utilization as well as pay for the resource. Hence, an account number is
required. Unfortunately, it can take days or even weeks to get the required
charge number, approvals and access privileges.

As personal computers became available, so did terminal emulation software.
An informal client/server environment ensued in which the host computer
became an uncooperative server.

6.9.3.1.2. Client/Server

This is currently the most widely supported model. Much of the technology
discussed in the remainder of this section supports it. At its most rudimentary, a
client may merely transact with a server on behalf of its human resource. More
sophisticated implementations have the client and server continually interacting
and load sharing.

6.9.3.1.3. Peer-To-Peer

Clients and servers readily swap roles according to the circumstance.

72

Enterprise Integration and Management Computing Resources

6.9.4. Network

The network is the backbone of the computing architecture. To minimize
incompatibilities among networks and computers and the cost to accommodate
them, network standards should be adhered to whenever possible.

MACHINES

Network

FACILITIES

HUMANS

ControllerCOMPUTING RESOURCES

TOOL RESOURCES

From the perspective of a computer, the network is just another input/output
device. Beyond the computer is a labyrinth of wires and communication
equipment that are unappreciated by the computer.

6.9.4.1. Standards

Various communication standards are widely accepted by industry. They
include the Open Systems Interconnect (OSI) model of the International
Standards Organization (ISO), the Systems Network Architecture (SNA) of IBM,
the Digital Network Architecture (DNA) of DEC and the Manufacturing
Automation Protocol/Technical Office Protocol (MAP/TOP). ISNA, DNA and
MAP/TOP all parallel the ISO OSI model to some degree. The protocols are
tested by the Corporation for Open Systems. A common protocol must minimize
the cost of creating, expanding or linking communication networks. It will likely
be selected from the options specified by the Open System Interconnect (OSI)
body.

OSI specifies a comprehensive framework of communications standards
covering all aspects of information exchange among computer systems and
their respective applications. It establishes protocol standards in seven levels,
or layers, of data communications and data management functionality. A sub-
set of these may be selected for actual implementation..

Each layer contains modules that specify and define a separate aspect of the
communication function. Within each module are protocols that define
message formats and the rules for message exchange and network
management between communicating systems.

The seven OSI layers are the Physical, Datalink, Network, Transport, Session,
Presentation and Application layers.

73

Enterprise Integration and Management Computing Resources

6.9.4.1.1. Physical

The Physical Layer is concerned with the mechanical and electrical
transmissions of signals among computer systems. The standards specify
connectors, modulation and encoding techniques. The IEEE 802 standards for
Local Area Networking support the physical and link layers of the OSI model.
The selection of a proper subset of the IEEE 802 standards for implementation
depend entirely upon the application.

The physical network medium may be an electrical conductor like copper, an
optical conductor like glass fibers, microwaves or some other means of
communicating electrical signals. The medium should minimally impact the
facility resources, yet support the speed and bandwidth of the connected
computing resources.

The facility resources required to support voice communications among human
resources are often based on networks of copper conductors (unshielded small
gage twisted pair). This often drives the selection of a network conductor, but
telephone communications may also be performed on computer network media
(shielded or fiberoptic cable). The selection of a suitable network medium is a
function of the distance between using resources, the communication flow rate
required, the physical environment and the electromagnetic environment.

Hence, the network medium is likely to be heterogeneous. The following
options are listed in order of the cost of the medium. Microwave transceivers
will likely be used over long distances or under circumstances that make a
physical link impractical (rapid movement of workstations in a building that is
not pre-wired). Fiberoptic cables will likely be used where a high data flow rate
is required or where high levels of electromagnetic radiation exist. Shielded
copper cable will likely be used where a high data flow rate is required or where
moderate levels of electromagnetic radiation exist. Unshielded copper wires
will likely be used where they already exist, or where low data flow rate is
required and low levels of electromagnetic radiation exist.

Consideration should be given to the fact the network medium may also be
used to communicate voice, video, and security, safety and environmental
information.

6.9.4.1.2. Datalink

The Datalink Layer establishes an error-free communications path between
network nodes over the physical medium. It manages access to the
communications channel and ensures the proper sequencing of transmitted
data. A node is any junction in the network. Each node has a unique address
and a computer. The computer may be of any type (workstation, file server,
communication specialist), as long as it supports network activity. Data Links
can be Ethernet, DDCMP or HDLC.

74

Enterprise Integration and Management Computing Resources

6.9.4.1.3. Network

The Network Layer supports the allocation and interpretation of node
addresses. The network layer establishes the path between communicating
nodes. It routes messages through intervening nodes to their destination and
controls the flow of messages between nodes.

6.9.4.1.4. Transport

The Transport Layer provides source node to destination node control of a
communication session once the path has been established. This layer allows
processes to exchange data reliably and sequentially, independent of which
computers are communicating or their location in the network.

6.9.4.1.5. Session

The Session Layer manages the dialog. It establishes and controls system
dependent aspects of communications sessions between specific nodes in the
network.

6.9.4.1.6. Presentation

The Presentation Layer masks the differences of varying data formats between
computers of different vendors. This layer transfers data in a manner that is
independent of the computer, performing appropriate conversions at each
computer.

6.9.4.1.7. Application

The Application Layer provides services that directly support such user and
application tasks as file transfer, remote file access and data management.

6.9.4.2. Hierarchy

A network hierarchy is a means of minimizing telecommunication costs. All the
computers in a group of computers can communicate to other computers via a
specially equipped computer in each group. Such a network architecture
corresponds with the "keep the data as close as possible to its primary user"
philosophy.

Some eighty percent of the work in an enterprise is concentrated in local
processing by work groups using specialized resources. Their deliverable and
control communication requirements are such that their computing resources
may be grouped. The remaining twenty percent of deliverable and control data
is shared among multiple groups of resources (functional departments). This
relationship may change as multi-discipline teams are employed. The network
should enable distributed processes and data sharing among the resources
employed throughout the process.

75

Enterprise Integration and Management Computing Resources

Consequently, a combination of wide area, value-added, regional, local area
and cell network types may be required to support the process of an enterprise.

6.9.4.2.1. Wide Area

A Wide Area Network (WAN) is a network which interconnects defined regional
networks. It provides data and voice communications between distant sites
which are not within the same defined region. This is supported by using
satellite links and T-1 leased lines. Other public networks provided by
companies like Telenet, Tymnet, and Accunet are also available to support
WANs using X.25 packet-switching.

6.9.4.2.2. Value Added

WANs may be extended or interconnected by way of a Value Added Network
(VAN). Subscribing to a public VAN extends network capabilities to other
involved parties of the business process. Communicating to subcontractors and
customers are strong examples of the business requirement to subscribe to a
VAN. The government CALS initiative and standards on Electronic Document
Interchange (EDI) provide justification and enabling capabilities to utilize a
public VAN to support effective communications in an extended enterprise
environment.

6.9.4.2.3. Regional

The regional network interconnects host processors, workstations, and terminal
devices at all levels of the hierarchical network between remote sites within a
geographic area. Regional networks normally consist of 56 Kbyte Digital Data
Service (DDS) and T-1 leased lines from a local telephone carrier. When
appropriate, multiplexed wideband links are used for ease of network
management and cost benefit reasons.

6.9.4.2.4. Local Area Network

The Local Area Network (LAN) is usually based on a backbone that is capable
of high speed data communications with transfer rates exceeding millions of bits
per second (Mbps) Local Area Networks are used to link cells and major
computer nodes, using bridges, gateways or routers as appropriate.

A backbone identifies the highest level of networking within a geographic area.
The backbone may be implemented over existing broadband resources. It may
use fiberoptics where additional bandwidth is required. The backbone offers
flexibility and connectivity to enhance the efficiency of a distributed computing
environment.

Local Area Networks optimize data sharing and computer utilization in work
groups. Appropriate clustering supports fast, high-volume traffic in a localized
area, and a lower volume of inter-network traffic outside the local area. Local
area networks also provide optimized sharing of peripherals. LANs are

76

Enterprise Integration and Management Computing Resources

particularly well-suited for departmental or project related functions which
require a dedicated network (classified processing).

The physical media for LANs is usually building distribution twisted-pair wiring,
except where bandwidth requirements mandate coaxial cable. Fiber may be
used for bandwidth or interference reasons.

LAN configurations should adhere to IEEE 802.3 Ethernet (or where required,
IEEE 802.5 Token Ring) specifications. Digital Equipment Corporation's
DECnet may be implemented for new LAN configurations based on IEEE 802.3
Ethernet.

TCP/IP should not be implemented unless an OSI compliant upper-layer
protocol product is unavailable.

LocalTalk networks may utilize existing twisted-pair wiring (PhoneNet
implementation). LocalTalk LAN workstations may access external resources
via a gateway node configured with IEEE 802.3 Ethernet (and if required,
TCP/IP capabilities).

Apollo LAN workstations may access external resources via a gateway node
configured with IEEE 802.3 Ethernet or TCP/IP. Until Apollo cell networks can
utilize existing building distribution twisted-pair wiring, the LAN cabling should
only span a limited area.

6.9.4.2.4.1. Bridges, Gateways and Routers

Bridges and gateways provide an extension of this hierarchical topology to
lower level networks such as IBM's SNA and Apple's LocalTalk. Digital
Equipment Corporation's Digital Network Architecture (DNA) spans both the
backbone and local work groups (LANs) in a common environment.

Local Area Network

IEEE 802.3 Bridge

NODE

NODE

NODENODE

NODE

IEEE 802.5 Bridge

NODE NODE NODE

Broadband Backbone

Ring
(eg. Token Ring)

Bus
(eg. Ethernet)

77

Enterprise Integration and Management Computing Resources

Filtering bridges may be used to interconnect a LAN to a broadband network
backbone.

Bridges are protocol-independent and transparent in the sense that cell
networks with dissimilar upper-layer protocols can pass packets of information
from cell to cell via the LAN. They have the flexibility to restrict local traffic on a
particular cell so it does not flood the data highway with unnecessary data
traffic, yet will automatically allow the flow of data to specific remote cells when
absolutely necessary. Bridges improve overall network reliability and extend
the distance over which communications between cells can be supported.

Gateways perform protocol and address translation to enable two dissimilar
domains to communicate.

The use of bridges, gateways and routers as interfaces to a broadband
backbone network retain LAN identification and provide isolation of networking
levels. These bridges, gateways and routers should support DECNET, SNA,
TCP/IP, and XNS higher-level protocols. Applicable LANs are IEEE 802.3
Ethernet, IEEE 802.5 Token Ring, Apollo Ring and LocalTalk.

Routers perform the same task as bridges and gateways, but require that the
protocols above the OSI Network Layer be identical.

Data switches allow for flexible connectivity for terminal and host environments.
A single terminal device can have switched access to several hosts, or several
terminals can have switched access to a single host. Dedicated connections
can be established as required. The two data switch standards are the AT&T
System 85/75 and the Infotron INX4400. AT&T is the emerging standard, which
integrates voice and data over the same wires. Infotron is the de facto standard.

A user requiring both telephone and asynchronous data transmission may have
a telephone installed with an Asynchronous Data Unit (ADU). The ADU gives
the telephone data communication as well as voice capabilities over a single
set of wires to the PBX switch. Transition to the PBX as the standard for
asynchronous communications is advisable.

The Integrated Systems Digital Network (ISDN) standards will provide solutions
to data, voice and video (multimedia) communications.

6.9.4.2.4.2. Broadband, Baseband and Fiberoptic

Broadband Local Area Networks (LANs) are capable of supporting multiple
communication services using basic cable television (CATV) technology
(shielded cable). CATV technology utilizes frequency division multiplexing. It
provides a wide range of services over a single coaxial cable, including video,
voice and data. However, transmission rates over the broadband are limited to
5 Mbps or 10 Mbps per communication service, depending on the number of
subchannels assigned for carrying the service as well as the communications
equipment used.

78

Enterprise Integration and Management Computing Resources

Baseband coaxial cable backbones are quite different from broadband CATV
technology for the support of backbone communication services. Baseband
backbones restrict the maximum length of backbones and are only capable of
supporting a single communications service. However, this restriction is
overcome by its ability to transfer information at a minimum 10 Mbps.

Hyperchannel, a product of Network Systems Corporation may be used as a
backbone. It supports high speed (200M bps over four coaxial trunks, 50M bps
per baseband coaxial cable) bulk host-to-host file transfers between an
enterprise computer (IBM 308X) and various mini- and micro-computers
(workstations) from different vendors (heterogeneous computing environment)
using proprietary communications software. If large blocks of data are to be
moved on a regular basis, a high speed baseband backbone is advisable
Hyperchannel may be a viable backbone network product until it is converted to
or supplanted by an OSI compliant product.

Communication services have long been provided by electrons in copper
cables. Now photons are being used in fiberoptic cables. Fiberoptic cable
consists of a very thin glass core surrounded by reflective and supporting layers
of material. It transmits the light generated by a diode laser. One fiber is
adequate for asynchronous communications under 1000 meters. Two fibers
are necessary for synchronous communications or for bi-directional
asynchronous communications over 1000 meters.

The use of fiberoptics for a communications backbone for a Local Area Network
is ideal for many reasons. Present technology provides data transmission
speeds in the order of hundreds of megabits and soon to be gigabits per
second. This is possible because there is less signal attenuation than radio
frequency signals. The use of fiberoptics technology is also more secure. It
does not radiate signals in any form, and is immune to electromagnetic
interference. It provides high integrity of data transmissions at very high
speeds. Security breaches are also easily detected when the fiber has been
illegally tapped since this would dramatically decrease the signal intensity and
increase the error rate.

Unfortunately, communication interface units and field installation tools for
fiberoptic communication systems are not well developed. It is difficult to design
and implement a viable fiberoptic backbone. Standards are being developed
for the use of fiberoptic technology in communications. It is only a matter of time
before the industry can take practical advantage of the backbone capacity of
fiberoptic cable. The American National Standards Institute (ANSI) is in the
process of passing a Fiber Distributed Data Interface (FDDI) standard. It will
establish a full 125 Mbps backbone using redundant Token Ring technology.

6.9.4.2.4.3. AppleTalk LAN

AppleTalk is a network system consisting of cabling systems, network
components and network services. LocalTalk (.25 Mbps), Ethernet, Token Ring,

79

Enterprise Integration and Management Computing Resources

FDDI, etc are cabling systems. Routers (bridges), gateways, Macintosh
computers, personal computers (IBM and clones) and DEC VAX computers are
network components. AppleShare (Macintosh file server), LaserShare
(Macintosh print spooler), etc. are network services.

Application

Presentation

Session

Transport

Network

Data Link

Physical Link

Appletalk File Protocol, Postscript

Appletalk Session Protocol

Appletalk Transaction Protocol

DDP

ALAP

Twisted pair

Protocol Architecture

Network System

6.9.4.2.4.3.1. Applicability

AppleTalk may be used on all Local Area Networks at 230.4 Kbps, using the
LocalTalk (telephone cable), or 10 Mbps, using EtherTalk (coax).
The newer AppleTalk Data Stream Protocol (ADSP) consists of:

Network 16 bit static (managed),
Node number 8 bit dynamic (computer finds unique node number),
Socket 8 bit,
Zone logical/arbitrary way to group nodes,
Bridges Internet routers.

6.9.4.2.4.3.2. Functionality

Terminal emulation
File transfer

One VMS file = one Macintosh file or
One VMS file = one Macintosh disc

Virtual disk
File serving
Print serving and
Mail serving

6.9.4.2.4.3.3. Hardware Options

Asynchronous - terminal emulation, file transfer, virtual disk, performance
limited.

Direct Ethernet - 2 to 5 times faster than asynchronous, all services, use Kinetics
Etherport SE, SC, or Etherport II, the Dove Box or Apple EtherTalk.

LocalTalk bridge to Ethernet - all services, performance good, use Kinetics
Fastpath (fastest), which uses AppleTalk (dynamic), IP (static), or
Cayman Gatorbox, which uses Columbia AppleTalk packages
(AppleTalk inside of Internet Protocol).

80

Enterprise Integration and Management Computing Resources

AppleTalk for VMS is a standard. Its ridge performance problems will go away
with AppleTalk 3.0. AppleTalk File Protocol (AFP) will be standard for the
Macintosh/VAX. MACworkstation, X Windows and DECwindows will be
supported. ADSP will be used for distributed data processing.

3/1. from Network Innovations, a subsidiary of Apple Computer will be the
standard communication language. It will provide distributed data access for
desk-top applications through networks to host computers (IBM VM or DEC
VMS) and their databases. It has 35 SQL-based data manipulation verbs
(statements). They allow the application programmer to ignore the network and
concentrate on application to application programming (client/server). CL/1 is
written in C. It is tightly integrated with the DEC Command Language (DCL). It
will produce output data mapping as well as the data needed by a client
application. CL/1 is also linked with HyperCard.

6.9.4.3. Cell

Data transfers need not occur in real-time except those occurring between
process controllers driving relatively autonomous devices (direct numerical
control machines, robotic devices) and the controlling (cell) computer.

Cell network configurations provide a specific network service. They are
favored for departmental use. Examples of cells or subnets include segmented
Ethernets (thin, standard, twisted-pair), Token Ring, Apollo ring and AppleTalk.

Minicomputers, workstations or even personal computers may be used as the
interface between a LAN and a cell. They may be a cell controller. A cell
controller controls the devices in the cell and informs any human operators
involved with the cell of its activity. The cell controller cumulates tasks and task
sets (repeat this task n times) as they are received. It distributes information to
the operators and the various machine and robot controllers such that their end-
effector actions and motions are coordinated. Depending on the type of cell is
network implemented, a bridge or gateway may be used as an interface to the
LAN.

The cell controller should have sufficient disk capacity for 24 hours of work.
This should provide ample time for a failure external to the cell to be corrected
before cell operations are affected. The cell controller should also have a
removable disk or other means to acquire data for the cell should an extended
network failure occur.

81

Enterprise Integration and Management Computing Resources

6.9.4.4. Node

Nodes are terminal devices which include file servers, personal computers,
workstations, and intelligent peripherals (printers, plotters). They may be
individual devices or interfaces to a cell network. ASCII terminals are
connected to the network environment through a routing device such as a
digital PBX, data switch, or intelligent LAN unit (NIU).

LOGICAL NETWORK STAR CONFIGURATION

PBX
or Data
Switch

Twisted-Pair LinkTwisted-Pair Link
Node

Node

Node

Node

Node

Node

Node

Node

NIU

Node

BUS NETWORK CONFIGURATION

NIU

Node

NIU

Node

NIU

Node

6.9.4.5. Network Management

Network management increases in importance as networks and the
applications running on them become more distributed in a heterogeneous
computing environment. Network management covers the administration,
configuration, performance, fault isolation, and security management of the
network. OSI standards will enable the development of common management
information services. These services will allow inter-operability among network
management applications across a heterogeneous computing environment.

System configuration and traffic will be monitored from a centralized facility
having the technical capability to administer the network. Departmental or
project LANs may assume some responsibilities for network administration as
an extension of the centralized network management facility. Until the OSI
standards have been completed, vender provided network management

82

Enterprise Integration and Management Computing Resources

"turnkey" applications will be used. IBM's Netview is capable of monitoring
network components to the node level. DEC's VAX Cluster NCP can determine
"reachable" resources within a particular VAX cluster.

The network management tool should support non-stop networking by
performing tests, detecting faults, disabling failed elements, re-routing traffic,
indicating state, gathering status, providing displays and report generators for
network administrators and notifying users of network and node status. The
network management of the future should provide enterprise wide management
of the distributed computing environment, and be accessible from anywhere in
the network.

6.9.4.6. Unix Communication Services

The current implementation of these protocol standards in the Unix environment
is in part by way of TCP/IP. BSD 4.3 has the better networking subsystem.
Ultrix 3.0 is essentially BSD 4.3 plus corrections, new functions and better
performance. Not included with Ultrix 3.0 are syslog, xns, tn3270, TCP/IP used
over uucp or hyper, but it does include slip, news, rn and gated (public domain
software).

Applications defined
within BSD 4.3 application
protocol suite program
interface

Data link (ethernet)

Network

Transport

F
T

P

T
E

LN
E

T

rc
p

rlo
gi

n

rs
h

T
F

T
P

S
un

 R
P

C
N

F
S

TCP
IP

UDP
ICMP

Hardware

BSD socket

6.9.4.6.1. Protocols

Transmission Control Protocol (TCP) is a stream protocol (no records) in which
a sequenced packet of bytes is transmitted using one or more network paths. It
will re-transmit if bytes are missing according to the checksum at the receiving
station. It must consume data as it arrives and re-combine bytes into records. It
uses port-to-port connections, flow control (windows) and acknowledgements.

Internet Protocol (IP) supports 32-bit host addresses with 4 bytes in three forms:
Class A - N0H1H2H3 - N<128
Class B - N1N2H1H2 - 128≤N<192 for large sites
Class C - N1N2N3H1 - 192≤N<255 for most small sites

It also supports adaptive routing and fragmentation/re-assembly of 1500-byte
Ethernet packets that target machines utilize whenever communication is
available.

83

Enterprise Integration and Management Computing Resources

User Datagram Protocol (UDP) is a datagram protocol that is unreliable (no
promises, can run out of buffer space and discard data). It preserves records,
but the consuming program must check for lost data and byte order (packets
delivered in the order they arrive). It has an optional data checksum.

Internet Control Message Protocol (ICMP) performs routing management ("Look
out, this node is going down") link management ("Receiving host buffers are
full."). It throttles traffic, provides error messages (destination unreachable, time
expired), and makes low-level calls (ping).

ARP is the acronym for Address Resolution Protocol. It maps between INET an
address and its Ethernet address.

6.9.4.6.2. Services

File Transfer Protocol (FTP) has high start-up overhead and low transfer
overhead. It is built on TCP and has a lot of functionality (e.g., multiple files
transferred in one operation).

Trivial FTP (TFTP) has low start-up overhead and moderate transfer rates.

Simple Mail Transfer Protocol (SMTP) supports electronic mail related
commands (Send mail).

TELephone NETwork (TELNET) supports remote logon as if the terminal were a
local device, using RS-2323 for long distance communications.

6.9.4.6.2.1. services on Unix:
rep - remote copy - mimics cp, allows 3rd party copy,
rlogin - remote login - includes terminal type and
rsh - remote execution

require commonality of name space.

Remote Procedure Call (RPC) of Sun Computers allows low-level routines to be
executed remotely.

Network File System (NFS) allows:
remote file systems to be "mounted" to local system,
remote printing (lpr),
remote execution (rsh, rexec, SUNRPC),
name saves (bind, yellow pages),
terminal servers (Telnet, Local Area Transport protocol),
network oriented window system (x:, MIT's Project Athena is socket

application).

6.9.4.6.3. Data Links

Data Links can be Ethernet, DDCMP or HDLC.

84

Enterprise Integration and Management Computing Resources

6.9.4.6.4. Programming

Subnets shield internal company organization from the outside world. They
allow an internal collection of networks to appear as one to the outside world.
They use a Class B address (N1N2H1H2) like a Class C address (N1N2N3H1),
where N1N2 are the Class B network for the outside world, H1 is for a gateway
that routes the external and internal world to Internets, and H2 is the address for
a host on the internal network.

Socket addressing requires 16 bits to be unique to host and protocol. Socket
numbers < 1024 are associated with some privileged application that will not
necessarily respond. A socket can only be opened by root (most powerful Unix
user). The socket is the terminator for communications at a computer. Sockets
are addressable software data structure established by the Unix kernel. Pipes
can be sockets. In fact some pipes are implemented as two sockets.

6.9.4.6.5. Callable System Routines

socket() - set of primitives that create, bind (application has its own network
address) and connect socket (active user). It can listen, accept (passive
user), read, write and close. It obtains socket from system (# = port
number). It returns a descriptor with three arguments:
6.9.4.6.5.1. protocol family (AppleTalk ...),
6.9.4.6.5.2. type (stream or data handler) and
6.9.4.6.5.3. which protocol to select from family according to type.

bind() - associates an address with a socket (socket address data structure
setup). It cannot use a busy socket. If a socket number is given as 0, the
system will select a socket number.

connect() - client initiation of stream protocol.
accept() - server initiation of stream protocol.
sent() or sentto() - send data on socket. Can only be used in the case of a

connected socket.
sentto() - send data on socket. Can only be used with an unconnected socket.
recv()/recvfrom() - receive data from socket.

6.9.4.6.6. Network Management

RIP - Routed Information Protocol - dynamic local routing
Exterior Gateway Protocol
Setup - Kernel configuration

6.9.4.6.7. Naming

Berkeley Internet Name Domain (BIND).

85

Enterprise Integration and Management Computing Resources

6.9.5. Computers

To be compatible with enterprises that experience dynamic organizational
changes, computing resources must be readily expandable and contractible.
The large, mainframe-based computers that traditionally provided computing
resources interactively by way of terminals or batched by way of paper reports
have performance and cost increments (step functions) that are too large for a
dynamic enterprise. Programs often cannot afford computing resources during
their start-up phase, because they must pay for excess computing capacity. If
they grow rapidly, they suffer with too little computing capacity. It takes too
much time to justify the large cost involved in increasing the capacity of
mainframe computers. Furthermore, the peripheral devices that are available to
mainframe users are limited.

A network of workstations and file and application servers allows computing
capacity to be increased or decreased in small increments of cost and
performance. Programs can readily change the computing cost and
performance according to budget and schedule constraints. High performance
computers can be moved or otherwise applied where the greatest benefit is
derived. The computing resources are under the direct control of the Program.
They can be isolated for security reasons. However, such isolation may
increase the cost of computing due to the need to duplicate computing
resources and data in a secure environment that might otherwise be available
via the network.

To minimize installation and relocation costs, the computers must be compatible
with an office environment. They should require no extra air conditioning or
electrical power. The heat load they add to the environment should be no more
than that generated by humans occupying the same space.

Computers are normally microprocessor-based. They normally have a bus into
which processor, memory and peripheral control cards (printed circuit
assemblies) are inserted. The peripheral control cards may interface any
combination of many different peripheral devices to the computer. They may be
output devices like

interlaced (TV, VCR),
non-interlaced two- and three-dimensional image displays,
pen impact dot-matrix electrostatic ink jet or laser plotters or printers,
sound generators,
analog or digital signal generators,
stepper or synchronous motor drivers for machine or robot control.

They may be input devices like
keyboards,
mice,
trackballs,
two- or three-dimensional joy-sticks,
touch-sensitive screens or pads,
laser disks,
CD-ROMs,

86

Enterprise Integration and Management Computing Resources

CD or video cameras,
digital scanners,
analog or digital signals from test equipment,
limit switches from machines, or
head, eye or brain potential position sensors for advance look-and-select
devices.

They may be input and output devices such as
magnetic disk drives or tape drives,
WORM (Write Once, Read Many) optical drives,
RAM disk "drives",
video or audio tape machines, or
telephone interaction devices.

A typical computer includes a non-volatile storage medium, like a magnetic
disk, and a disk controller. They provide a permanent place to store computer
programs or data. That which is in computer memory, usually volatile Random
Access Memory (RAM), is lost when the computer is turned-off.

A typical computer includes a means of inputting and outputting data. Input is
provided by way of a keyboard. Output is provided by a display monitor and its
controller. Other output or input peripherals (n) can be added as well. All
interface to the central processing unit.

Controller

MACHINES
Peripheral nKeyboardDisplay

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

TOOL RESOURCES

Network

Controller

Storage

Controller

Computers can be classified as personal computers, departmental computers
and enterprise computers. Their skills and proficiency can vary widely. A
combination of general and special purpose computers that can work
cooperatively as well as independently, is currently the better computing
resource solution.

6.9.5.1. Personal

Personal computers provide dedicated processing power. As a result, the
computer and its assortment of peripherals can be optimized for a likely or
intended interactive software tool set. The user interface can be more
sophisticated (intuitive, friendly) than can be practically provided on terminals
from a minicomputer or mainframe computer. As such, it reduces training costs
and increases the productivity of their users.

87

Enterprise Integration and Management Computing Resources

Examples of personal computers are the Macintosh from Apple Computer and
Personal Computer from IBM or their clones. Apple Computer introduced the
first commercially successful intuitive and highly productive graphical user
interface with windows and pull-down menus. Apple Computer uses a
comprehensive library of programming tools to help induce its software tool
developers to develop products that have a consistent look and feel. Similar
user interfaces are now available from Microsoft (Windows) or IBM
(Presentation Manager) or Digital Equipment Corporation (X-Windows), but the
lack of programming standards allows the user interfaces of the software tools
that run on these computers to be annoyingly inconsistent.

Personal computers normally provide word processing, spreadsheet and two-
dimensional graphic design capabilities. Many now also provide multimedia
capabilities, like coordinated text, 2-D and 3-D graphics, images, video, and
sound. They are alternately available with the Unix operating systems (A/UX,
Xenix).

Higher performance or more expensive personal computers are often called
workstations. The power of workstations is such that, they can support the
execution of three-dimensional modeling and advanced engineering analysis
in a time that is acceptable to an interactive user of those software tools.
Workstations typically use a Unix operating system, like AT&T Unix System V
with Berkeley 4.2 extensions. They are evolving toward the Portable Operating
System Interface for Computer Environments (POSIX) as embodied in the
proposed IEEE P1003.1 POSIX operating system specification.

Both the personal computer and workstation can be used as dedicated
computers or as network components. As part of a network, they as well as
departmental and enterprise computers can share some of the processing
burden of other than their direct users. They can cooperatively process
distributed processing tasks. They can be diskless and dependent on the
permanent storage facilities of a network file server. They can be departmental
computers. They are usually maintained by their users. There is little or no
support staff needed.

Adding memory or storage capacity to personal computers or upgrading
personal computers to workstations represents the smallest incremental change
in computing resource capacity available. The costs of such performance
changes are relatively small as well. Consequently, personal computers can be
more closely tuned to the computing needs of their users than can the
departmental or enterprise computing resources.

6.9.5.2. Departmental

A function in the business process is often organized into a department. To
facilitate the sharing of data and software tools that are common to a function,
mini-computers or workstations are often dedicated as a network resource. As
such, a departmental computer is often called a file server. The server may also
provide access to special-purpose peripherals, large amounts of departmental

88

Enterprise Integration and Management Computing Resources

data, or support computation-intensive software tools, like array or vector
processing applications. A computation server may be configured from a loose
coupling of two or more computers. Departmental computers require a small
support staff.

6.9.5.3. Enterprise

Enterprise computers normally support enterprise planning, finance and payroll
functions. They can support large amounts of data. As a shared resource
supporting interactive software tools via terminals, enterprise computers provide
annoyingly inconsistent processing response times. They may exclude
additional users, charge for the resources used and are decidedly less friendly
than personal computers. They often require a large support staff. An IBM 3080
and a VAX 9000 are examples of enterprise computers.

Enterprise computers can perform computation-intensive tasks better than
personal or departmental computers. The IBM 3090 and Cray computers are
examples of computation-oriented enterprise computers. Typically, these
processors are accessed for large scale computation by personal computer
users who are willing to pay for more power than that which is available from
their departmental computer.

Increasing or reducing enterprise level computing resources involves a large
incremental increase or decrease in computing power and cost. Since
computing needs vary in small increments, enterprise computing resources
seldom match the need. As enterprise computing resources are saturated, they
become annoyingly slow or inaccessible, but the usage cost is low. Eventually,
they are replaced or upgraded. The resulting speed and access is good, but
the excess capacity increases the usage cost. The upgrade must be subsidized
in some manner or reversed to keep users from abandoning the enterprise
computing resource.

89

Enterprise Integration and Management Computing Resources

6.9.5.4. Operating System

The computers normally have operating system software through which the
computer and its peripherals may be accessed directly by application or data
management software. Operating system functions include task scheduling,
processing, storage and protection of data files, peripheral communications and
resource management.

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

TOOL RESOURCES

Network

Controller

Storage

Controller

To take advantage of existing computing resources and better
price/performance purchase options, it is desirable to have software tools that
are readily portable among a variety of computers from a variety of vendors.
Conversely, software tool suppliers want the largest possible market in which to
sell their products. A standard operating system or tool interface are ways to
establish a large market from a disjoint collection of small markets. This has
advantages for the competitive computer supplier as well as the software tool
supplier and their customers.

To simplify the communication problem among heterogeneous general purpose
computers, reduce the cost of implementing core framework software on
multiple computers and allow the most cost-effective computer to be used with a
particular software tool. The operating system must be one that is or will likely
be a standard. Unix is the closest operating system to being a standard. It is
the preferred operating system until POSIX becomes an available standard.

The POSIX standard specifies a set of run-time functions and procedures.
Software tools that use only this set will be portable across operating system
environments. For example, A POSIX-compliant program will run on VMS, Unix
and Ultrix without modification. To minimize the cost of a transition to POSIX,
any Unix purchased should be POSIX compliant, or at least its vendor should
have a low-cost migration path to POSIX and beyond POSIX to OSF-1.

Unix is preferred but not mandatory as the operating system for computers
which perform the function of a file or computation server.

If Unix is unavailable for a critical interactive tool, the tool should at least use an
X Windows implementation of the common command interpreter. This
command interpreter should correspond to that in the OSF Standard Unix or
AT&T System V Release 4.0 Unix.

90

Enterprise Integration and Management Computing Resources

6.9.5.4.1. Recovery

To minimize the need for computer support personnel and the cost of an
unavailable computer, it is desirable that all autonomous operating computers
be able to recover from an environmental (air conditioning, power) failure or a
tool (application program) failure as soon as the disrupting condition
(temperature, humidity, line power sensors required) ceases.

6.9.5.5. Utilities

Utility software may be specific to an operating system or acquired separately.
They are quite diverse and not easily depicted on a diagram like the one used
throughout this section to graphically relate computing resources. The following
utilities help maximize the performance of computing resources and protect the
data thereon.

6.9.5.5.1. Archive

As newer versions of data accumulate, it is desirable to free disk space by using
a utility program for deleting or transferring little used and older versions of data
to less expensive media (tape) for storage in less expensive facilities.

6.9.5.5.2. Optimization

If there is not enough contiguous space on a disk to store a file, the file is
fractured as required to store it in the spaces that are available. After the saving
and deletion of many files, eventually the data, programs and free space on a
disk will become so fragmented that the computer must spend an inordinate
amount of time finding free space large enough to accommodate even small
files. This can severely degrade performance. The time required to fracture
and aggregate fractured programs and data when they are used further
degrades performance.

Optimization software will check for directory inconsistencies, bad blocks or
other problems before it attempts to optimize a disk. It may repair the damage
or advise that a disk repair tool be used. Then it will use what free space is
available to rearrange the bits of data files and programs on a disk until they
and the free space are contiguous.

6.9.5.5.3. Repair

Much use of a relatively full disk will cause excessive data fragmentation. Such
fragmentation can confuse the extent file, catalog file, volume bitmap and boot
block of a disk. A disk repair tool can often correct these problems as well as
detect bad blocks on a disk and mark them so they cannot be used. Sometimes
an extent or catalog file may become so badly fractured that it cannot be
repaired. Then the only alternative is to copy the data and programs to another
disk or storage medium (backup the disk) and re-initialize the disk.

91

Enterprise Integration and Management Computing Resources

6.9.5.5.4. Backup

Backup tools copy data on workstations or personal computers to other storage
medium or to a designated departmental or enterprise level computer. Backups
can be performed on command or at a time.

The backed-up data is usually compressed to minimize the transfer time and
storage space required. To minimize the backup time, the transfer is usually
contiguous (streamed). A directory of where certain data is stored is usually the
last data written to the backup medium. If a loss of data occurs, the same
backup tool can be used to restore the data.

Full backups copy and compress everything on a disk. Incremental backups
copy and compress only that which has changed since the last full or
incremental backup. Incremental backups should be performed daily. Full
backups should be performed weekly. To protect data from loss due to physical
damage (fire, earthquake, theft), backup data should be geographically
separated from the storage medium from which it was derived.

The ability to perform remote backups is desirable. Backups on unmanned
workstations, file servers or departmental computers can then be accomplished
from a departmental or enterprise computer where operators are normally
present.

6.9.5.6. Security

The utilities described thus far do not protect from the intentional destruction or
copying of data. That is the job of security software. There are many degrees of
security. The necessary degree is a function of the sensitivity of the data or
processing involved. It may be non-proprietary, proprietary or company private
from an industrial security perspective, and/or confidential, secret , etc. from a
national defense perspective. Computing resources consisting of distributed
personal computers, workstations and file servers can easily accommodate
classified processing tasks. The data or computers involved are simply isolated
from the rest of the enterprise.

Only portions of a product may be classified. During the evolution of a Program,
data is often declassified. Metadata about the classified data must be
maintained to assure those working in the unclassified environment that there
are no "holes" in the product definition. A home for classified data must be
provided when it is declassified.

6.9.5.6.1. Unclassified

Update and access protection can be provided via user-id and password pairs
that are entered manually or by way of identification badges or other means that
uniquely identify the user. These ID/password pairs may control access to a

data entity,

92

Enterprise Integration and Management Computing Resources

field (or object),
set of fields (record),
set of records (file),
set of files (database),
the tool (application program) used to access the data or
the computer on which the tool or data reside.

Security should not be imposed at a session, workstation or tool level, because
the data is not protected from methods that can access the data directly.
Security constraints should be imposed at the lowest level of data practical.

Typically, data can be viewed by many people concurrently, but it can be
changed by only the originator or a designated owner of the data. Although
some feel that multiple concurrent update capabilities are required to support
concurrent engineering, it is not practical. There is really no need for it. A
product is always decomposed into parts. Typically designers and analysts are
responsible for collections of parts (systems or assemblies). Seldom is there
more than one designer or analyst working on one contiguous part. If there is a
requirement for concurrent update to one part model, then the model can be
further decomposed into groups of features. Each of these could be updated by
only one of the designers at a time. The ability to change owners is all that is
needed.

6.9.5.6.2. Classified

If defense related work is to be performed on a computer, approval from the
Defense Investigative Service (DIS) must be obtained. Some of the rules that
may apply are listed here.

Determine which data and data processing equipment must be protected
and how.

Comply with company as well as Government requirements.
Control access to the system (visual, physical and electromagnetic).
Plan for controlling potential damage to the system.
Ensure that the system resists compromise of its controls through misuse

or manipulation of data.
Restrict the use of the system resources to authorized individuals only.
Limit those individuals to using only the system resources required to do

their jobs.
Assure that physical access to transmitted data in not possible.
Encrypt sensitive data. This involves the use of a key and technology

approved under the national cryptographic standard. Intervals for
changing the key are contractually specified.

Assign duties and keep records such that individuals can be held
accountable for their actions.

Assign no one to sensitive combinations of resources. Change job
assignments frequently.

The operating system should be capable of preventing one program from
interfering with or modifying another.

93

Enterprise Integration and Management Computing Resources

If the computer is to be used for non-classified work periodically, sanitization
procedures must be followed. They involve putting the operating system,
application programs and all classified data on a removable medium, storing it
and any printer ribbons in a safe or other appropriate enclosure, reformatting all
fixed disks and powering the computer off to delete anything in its memory.

6.9.5.6.3. Secret

If secret work is to be performed on a computer, the National Security
Classification Tempest specifications and guidelines apply. Tempest involves
the containment of emanations from a computer or any of its peripherals.
Emanations are signals of varying frequencies which can carry recoverable
information.

Normally a shielded vault is used to contain and ground any emanations from
the computer related equipment in it. Some computers, peripherals and their
cables have been Tempest-certified. They need not be in a shielded vault, but
they must be protected from physical access.

Transmissions between Tempest facilities are secure if no recoverable
information is produced from a connection. This is often accomplished using a
fiber cable contained in a pressurized tube. Puncture of the tube automatically
terminates all communication.

Security software like ACF2, TOP SECRET and RACF is required to protect
computing disk, tape, system software, application programs, and control the
access or use of peripherals. The user ID and password described in the Data
Protection section is normally sufficient to identify the user uniquely, but
passwords must be changed within 60 days. Those not updated are voided.

The security software should limit users to only those resources for which they
are authorized. It should log all data accesses and issue a violations report to
the security administrator. It should disable a user ID with three violations. It
should log the opening of files which contain sensitive data (e.g., estimating
data) even when the access is authorized. It should log the use of systems
utilities which have the ability to bypass the security software. It will restrict
access to all resources unless a special grant of access is given. This is the
opposite of leaving access open unless specifically protected.

6.9.5.6.7. Display Services

Originally, everything that the operating system was unable to do had to be
accomplished by an application program. File handlers, display drivers …
everything had to be written by the application programmer. That made even
simple computer tools very large and complex and established a practical limit
to tool sophistication.

Each these lower level functions were similar from tool to tool and computer to
computer. Programmers developed libraries of these functions and

94

Enterprise Integration and Management Computing Resources

programmed their tools so the functions could be re-used with little or no
modification. Some programmers exchanged their function libraries with other
programmers.

Finally, some computer manufactures, most notably Apple Computer, provided
the functions as part of the computer (firmware). Each tool developer could then
benefit from a set of low-level functions and thereby devote relatively more time
to high level tool functions.

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

TOOL RESOURCES

Display
Services

Network

Controller

Storage

Controller

With the advent of X-Windows and Microsoft Windows, the user interfaces of
other computers are becoming more like that of the Macintosh. Tool developers
who use X-Windows need only maintain one user interface. It will work on any
workstation that supports the X-Windows standard (X.11). They thereby
minimize their development and maintenance costs while retaining a broad
market. Even Apple Computer is supporting X-Windows.

Most computer suppliers are evolving their products beyond X-windows to the
Motif user interface standard. It will further reduce the training costs associated
with learning to use a new computing resource or software tool. Motif will make
it even easier to develop sophisticated, interactive computer tools.

95

Enterprise Integration and Management Computing Resources

6.9.5.6.8. File Management

Files are collections of data. They are read sequentially (like a tape) from the
beginning of the file until the data (characters, sequence of bits) of interest is
found. Variations on this theme are the Indexed Sequential Access Method
(ISAM) and the Virtual Sequential Access Method (VSAM). These methods
provide indexes to selected data to speed its access. Opening files, putting
data into files, getting data out of files and closing files are basic file
management services.

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

TOOL RESOURCES

Display
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

File sharing in a single computer multi-user environment (mainframe computer)
is relatively straight forward. Read or write access is a function of file
ownership, which is controlled by user identification and password. Files would
simply be copied from the catalog of one user to that of another.

File sharing in a distributed computing environment (network of mini- and micro-
computers) requires a more sophisticated file management system. It may take
the form of a centralized repository with distributed access, or a directory for all
the disks in the network (yellow pages). It may be homogeneous (only
computers of the same make and one or more types) or heterogeneous
(computers of various makes and types).

The repository approach is like a library. It loans copies of files to distributed
users, assuring that there is always a master copy safely stored on the central
computer. If the "original" is checked out by the originator or an authorized
designate, later borrowers are not granted access. They are notified that the file
is being updated and by whom. When the file is checked in, its revision number
or date is incremented. If a copy is checked out, it cannot be checked in by the
same name. It becomes a derivative file. It may be a new version of the data,
like a design variation. It may be a constraint on the design of an adjacent part.
It may be the basis for an analysis model. The facilities of the central computer
are used to archive and back-up the repository.

In a decentralized approach, the file control system must control access to the
files on each of the disks of the many computers in the network. When
workstation computers can be turned off or disconnected from the network,
distributed file management can be a difficult task. Backup and archival activity
must be triggered remotely or performed by the individuals who use each

96

Enterprise Integration and Management Computing Resources

computer. To avoid the cost of back-up and archival media for each
workstation, the data can be copied across the network to a node with such
storage devices.

Some distributed file control systems also use file status (e.g., in-work,
approved, released) as control criteria. For example, the revision numbers of in-
work files are not updated. The revision numbers are incremented only after
files have entered the approval process or have been released.

The File Control System (FCS) developed by the Data Systems Division of
General Dynamics is a centralized repository on an IBM mainframe computer.
The FCS supports heterogeneous, distributed access, ownership access
control and file status promotion by non-owner users. EDCS™ from Digital
Equipment Corporation is an example of a homogeneous, distributed,
password controlled access file management system with file status promotion
by non-owner users.

The older file control systems only relate ownership and status to files. They do
not understand the relationships among the files. They do not even maintain
the derivative relationship.

More recent file control systems like InfoManager™ from EDS and EDL™ from
CDC include a product structure for relating the files. Product configuration
management can be performed with these systems. They include tool
encapsulation and invocation facilities. These help automate the check-in and
check-out functions and assure that the control system is aware of the
significance of all files created by those tools. Simple file management
capabilities are inadequate for this task. Such functionality requires
sophisticated data management capabilities.

6.9.5.6.9. Data Management

A database is a place to store and retrieve information. A data manager does
so in a manner that is more granular and sophisticated than that provided by file
management systems. Records and fields of data within a file can be directly
accessed by a data management system. Data management systems include
logging, back-up and recovery facilities as well as data definition, manipulation
and protection facilities.

Database management systems store data in individual files and among
multiple files. They may use file management systems for file protection and
access control. Database management systems may organize information in
hierarchical (IMS™), network (IDMS™) or inverted file (M204™) structures,
relational tables (ORACLE™) or as object entities (Objectivity™).

Hierarchical structures are like pyramids with higher level entities being
composed of (resting on) other entities in the next level below. They can find
what goes into what quickly (parts of assemblies in a product structure), but
slow when an update is performed. They must search the entire database to

97

Enterprise Integration and Management Computing Resources

find all occurrences of something that is not hierarchically defined, like an
attribute (owner, status) of a part. For example, "find all parts created by Fred
Smith" would be very time consuming to do with a database defined as a part
hierarchy.

Network structures allow direct relationships between the nodes of a hierarchy
(leaves, children) that avoid having to climb the hierarchy to a common node
and dive back down to access the desired data. This is a useful technique for
improving the performance of often-used searches, but its use must be limited.
It cannot be done for all combinations for all such relationships without
degrading the overall performance of the system.

Relational structures are relatively simple to understand and use. They can be
viewed as little more than many related spreadsheets. As a consequence,
users can develop their own relational data management tools with little or no
help from a programmer. The strict rules ("algebra") by which relational
operations are conducted make relational data management unambiguous, but
the performance of a relational system is worse than the other methods
mentioned thus far.

Inverted file structures are the inverse of hierarchical structures. As a
consequence, they perform updates relatively faster than their access can be
performed. Inverted files system like M204™ can be used to imitate all of the
data structures mentioned thus far.

All of the data management schemes discussed thus far require that the data
types and their relationships be pre-defined. New data of the defined type can
be added and their values and relationships changed, but new data types or
relationships cannot be added without re-programming the system.

Object-oriented data management OODM allows new objects and relationships
to be defined at any time. OODM provides object persistence. It keeps objects
around after they have been created by the object-oriented programming
language used by a software tool. OODM is described in more detail later.

Data Mgmt.
Services

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

TOOL RESOURCES

Display
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

If the application is table-oriented or otherwise simple, and it does not require a
high-performance database manager, then a relational database management
system may be used. Oracle™ is a popular relational database management

98

Enterprise Integration and Management Computing Resources

system, especially for distributed computing applications that must run on
computers from different vendors (heterogeneous). Even though data
management tool development is relatively easy with relational systems, the
use of a prototyping and development tool like HyperSQL™ or Omnis-5™ is
recommended.

If a graphic data definition and manipulation language is preferred or the
application is interactive, or a prototype is desired, especially those that are to
run on a Macintosh computer, Double Helix™ or 4th Dimension™ is
recommended. If the prototype is to run on a VAX™ computer or on a network
of Macintosh and/or VAX™ computers, Helix/VMS™ is recommended.

If a text-oriented data manipulation language is to be employed, a standard
form of SQL (no vendor extensions) is recommended.

If multi-dimensional modeling is involved, then an OODM is the logical choice.

6.9.6. Object-Oriented Data Management

Much of what follows was extracted by Maurice Pratt of The J.I.A. Management Group from material written
by Ontologic, Inc.

The object-oriented database management approach provides the benefits of
object-oriented programming, namely type abstraction, inheritance and
polymorphism. Type abstraction means that all objects are typed and they
define (and implement) their own behavior. The system can be viewed as a set
of components upon which operations can be performed. Where components
have only minor differences in behavior or properties, their types can be defined
with a super-type relationship. Then the sub-type can inherit all the common
behavior of the super-type. Only the different behavior need be defined.
Polymorphism means that multiple data types can have the same logical
operation defined for them and each of them can implement the behavior
appropriately. The same named operation is mapped to the appropriate
method for the particular type. The emphasis of the object-oriented approach is
on a high level of commonality and reusability with a consistent sharing of
services via inheritance.

An object-oriented database not only contains all data objects, but also all of the
meta information needed to describe the objects, their methods and all system
information. Objects may have a structure or may be of variable length. Object
database systems explicitly support both types. Complex objects are stored as
one unit (no splitting into sub-components).

Object management has been performed by the application programs. Many
do not provide object persistence. All the objects created during the session
are lost when the computer is turned-off. Object-oriented database
management systems (O-O DBMSs) are now available for object-oriented
programmers to use as a

database management and graphics system for a design or
manufacturing application,

99

Enterprise Integration and Management Computing Resources

tool to coordinate the usage and inter-relationships of versions of objects,
and

basis for integrating several computer tools.

O-O DBMSs support all types of engineering and manufacturing data efficiently,
including records, text and graphics. Some employ advanced compiler
technology to obtain very high performance, running as much as 100 times
faster than relational databases in design applications. Most employ a version
and alternative mechanism to track and coordinate the relationships and
dependencies of objects as they evolve.

The object model provides an efficient mechanism for data integration and
exchange. By bundling the complete semantics of an object along with the
data, it is far easier to share and exchange information. The following is a
generalized description of O-O DBMSs.

A database definition language (DDL) is used to define types. A database
manipulation languages (DML) is used to program operations and to access
objects from applications. DMLs are normally implemented as embedded
extensions to standard programming languages such as C, Ada and Fortran.
The use of an embedded extension to a programming language turns the
language into an object-oriented language.

Type definitions are compiled and stored in a library analogous to the
"metadata" of a conventional DBMS or the "symbol table" of a compiler. The
library differs from the symbol table in that it does not go away at the end of
compilation.

High level types are part of the system.

Entity

OperationPropertyObject

Attribute Relationship

These types define operations that are inherited by each of their subtypes.
Property defines 'Get_value' and 'Set_value' operations that are inherited by all
properties, even those defined on types declared by the programmer. The

100

Enterprise Integration and Management Computing Resources

Get_value and Set_value operations are automatically inherited by each new
object type defined.

Conventional database management systems carried liabilities when they were
used as the foundation for design applications (solid modeling). They exhibit
inadequate modeling power. Their static schemas do not handle design
evolution. The complex consistency constraints that are of central importance in
design support applications cannot be specified. They rely on the notion of
global consistency, which is not consonant with the gradual evolution of large
designs through long term states of only partial consistency. They have poor
performance when dealing with complex, aggregate objects.

6.9.6.1. Modeling Power

Commercial database applications may involve a hundred record types. It is
possible to look at a diagram of the database schema and understand it.
Design support applications may involve a thousand record types, so the
simple, one-level schema organization characteristic of conventional database
management systems, becomes incomprehensible. Complexity is classically
dealt with by abstraction.

Three abstractions which are almost second nature to the way we think are:
an-instance-of
a-kind-of, and
a-part-of.

Certain things are recognized as being true of all lions, for instance, and
therefore need not postulate each separately for each lion. Each lion is an-
instance-of the type LION, and therefore inherits four legs, a tail, a mane, etc.
Lions are a-kind-of jungle cat and we can therefore modularize our knowledge
still further. "Mane" would remain unique to type LION. Those things which are
true of all jungle cats need not be repeated specifically for lions, leopards,
panthers, etc. Finally, the left leg of a lion is a-part-of the lion as a whole, so if
the lion moves to the other side of a field, it can be assumed his leg did also; the
position information for each piece of the lion need not be recorded separately.
The lion is an assembly. The abstractions allow knowledge to be modularized
and organized, considerably simplifying the model.

Conventional database management systems (Codasyl or Relational) currently
support only one of these abstractions, an-instance-of. In a Codasyl DBMS any
record is an instance of a record type. In a Relational DBMS any tuple is an
instance of a Relation template. Artificial intelligence knowledge representation
systems are the first computer-based modeling systems to deal with very
complex problem domains. They have always supported the other two
abstractions, as well: a-kind-of and a-part-of. It is in these systems (MIT's FRL,
Stanford's KRL and CMU's SRLP) that the notion of inheriting properties and
operations down a-kind-of hierarchies first emerged. These early systems were
built in LISP as concept demonstrations. They had limitations that made them
inappropriate for non-academic use. Performance on traditional machines with
interpretive implementations of LISP was poor. They were also limited to

101

Enterprise Integration and Management Computing Resources

databases that would fit into a LISP workspace, the size of the virtual memory
required by a program. Furthermore, the databases were unique to the
program using them. The closest these systems came to a notion of the
independent long-term existence of the database was to copy the workspace of
a process to permanent storage (disk), and allow the subsequent resumption of
that workspace by a new invocation of the program. There was no provision for
sharing the database among multiple processes, certainly not among
processes running on separate workstations in a Local Area Network.

O-O DBMSs support all three types of abstraction characteristic of Artificial
intelligence knowledge representation systems, but do so with high
performance in the context of shared databases.

6.9.6.1.1 An-Instance-Of

Objects are instances of types. The type defines the set of properties that each
instance carries and the set of operations that can be done on an instance. This
is termed the specification of the type. The type also defines a representation
for instances of the type (typically in terms of lower-level types or subtypes) and
implementations of each of the supported operations.

Programs are constructed as sets of type managers with high level types
invoking operations on lower-level types. The type mechanism allows arbitrary
object types, not just records to be defined. Complex data types, such as
display lists, raster images and documents are supported. The formal
distinction between specification and representation allows the type
programmer to export only the behavior that is consonant with the abstract
object type being modeled. For example, the only retrieval operation
permissible on a stack is to "pop" the top element off the stack. This strict
separation of the abstract object from its representation is the basis for the high
degree of modularity characteristic of applications written in object-based
languages (or even in an object-based "style" using a traditional language). It is
also one of the key reasons why the performance of an O-O DBMS is high.
Since users of a type have no knowledge of its representation, it is possible to
build type-specific representations that are highly efficient.

102

Enterprise Integration and Management Computing Resources

6.9.6.1.2 A-Kind-Of

The power of the a-kind-of abstraction is in the notion of inheritance. If a PIPE is
a-kind-of PART, then it inherits all the properties and operations defined on
PART. They need not be reprogrammed for PIPE. An individual that is an
instance of a lower-level type (in this case PIPE) is also an instance of each
type that is a supertype of its most immediate type (e.g., PART, OBJECT,
ENTITY). The representation of the individual is a set of instance blocks. There
is one for each type of which it is an instance, immediately or indirectly. Each
instance of PIPE inherits a portion of its representation (specifically an instance-
block) from PART.

object
instance

block

part instance block
pipe

instance
block

Entity

Object

Part

Pipe

entity
instance

block

A particular menu, M<i>:

Since the operations it inherits from PART have been programmed to work with
the PART instance block, operation inheritance is straightforward at the
implementation level as well as at the conceptual level. Yet, a type manager is
free to redefine the representation of its instances. It can provide subtype-
specific implementations of operations inherited from its supertype(s) to improve
performance. The extreme of this is when a type defines the semantics of a set
of operations without a representation or implementation. Then each subtype is
required to provide its own representation and implementations of the
operations that work with the subtype specific representation.

A-kind-of abstraction clarifies the structure of large programs involving many
similar types and simplifies programming. It is not unusual for an object-based
implementation of a large subsystem to be as small as one-third the size of a
more traditional implementation.

103

Enterprise Integration and Management Computing Resources

6.9.6.1.3 A-Part-Of

The a-part-of abstraction is ubiquitous in design support applications. Things
are made up of other things. Design is in fact often a process of specifying the
subcomponent structure of a complex artifact.

With an O-O DBMS it should be possible to name the kind of abstract object that
occurs at each level of aggregation, e.g., CHIP, CIRCUIT, MODULE, BOARD.
The a-part-of abstraction should not be limited to defining a hierarchy between
objects. It should support a lattice. It should support property inheritance both
up and down the hierarchy.

Entity

Object

Part

Each word represents an object type. Each arrow represents a specific
instance of the a-part-of relationship. The a-part-of relationship is bi-directional.
It can be referred to by either of two names, depending on whether the
orientation is that of the component ("a-part-of"), or that of the assembly
("consists-of"). The object types at each level of the hierarchy are named. They
are identified in the schema. This allows the type programmer to define
properties and operations that make sense for each type. Record-variants,
which have different structures depending on which kind of object the record is
being used to represent are not required. This can dramatically improve the
clarity of the application code that interacts with the database. The
maintenance programmer knows by inspection which type the code is dealing
with at which instant. It is not invisible, buried in code that does run-time tests
on record-variant discriminator fields.

The ability to handle lattices as well as hierarchies is also important in design
applications that aggregate objects in two or more ways. Good examples are
the logical-physical aggregation hierarchies illustrated for Electronic Computer
Aided Design and Technical Documentation applications. In both cases the
hierarchies touch at their lowest levels. This is characteristic of a wide class of
design support applications. In systems that supported only hierarchical

104

Enterprise Integration and Management Computing Resources

aggregation, the lowest level components have to be replicated to allow
aggregation into different hierarchies. With an O-O DBMS they can share low-
level components without requiring the replication of data. This can
dramatically reduce storage requirements and remove from the application all
the burden of keeping replicated copies of the same data coordinated.

Support for type-specific property value inheritance both up and down the a-
part-of hierarchy is another feature of O-O DBMSs. It can reduce storage
requirements and improve performance for systems that use many small
objects. Each character of a document can be treated as a separate object. An
individual character may have 4 to 8 typographic properties (font, size, face,
etc.). Most are actually determined by a specification on a much higher level
object in the logical hierarchy, like SECTION_BODY. If values for these
properties can be "inherited" by an object at a lower level in the hierarchy, then
they need not be physically stored as part of the representation of each
character. A performance-related side-effect of property value inheritance down
an a-part-of hierarchy is that value and Set_property_value operations on the
types in the a-part-of hierarchy can be refined to cache current property values
in a state machine. From there, they can be rapidly retrieved without going to
the underlying database.

6.9.6.3. Design Evolution

Conventional database management systems are "shadow" systems. They
track the real world. Since the real world has one current state, the database
has one current state. That makes sense in the commercial applications these
systems were designed to handle. If you are booking reservations for a show
and the theater has 200 seats, it does no good to consider a theoretical theater
with 220 seats. Twenty people are going to be left at the gate.

In design support applications, however, it is precisely these versions and
theoretical alternatives that must be tracked. O-O DBMSs support both versions
and alternatives.

6.9.6.3.1. Versions

O-O DBMSs do not actually store a representation for each instance per se. An
instance in the O-O DBMS is actually modeled as a set of distinct versions.
There may be a "released" version, a "beta test" version, and a version under
development. Individual versions of the same conceptual object may have
important differences in property values (range of temperature over which the
version is stable, known problems, clock speed, etc.).

The real database in a conventional DBMS is the audit log. The database is
really just a cache containing the most recent version of each object in the
database. The problem with attempting to use these systems as a foundation
for design support subsystems is that there is no way for application programs
to access older versions of objects. In a typical commercial DBMS, an
application program identifies an object either by a "key value," or by an

105

Enterprise Integration and Management Computing Resources

"associative retrieval expression." In either case the database returns the most
recent version of the object when it is given a key value. This makes it
impossible to get at an older version. There is no way of asking for it.

The inability to access versions is why a conventional DBMS cannot support the
functionality needed for a design support application. The ability to compare
and contrast successive versions of an object or a mutually consistent set of
objects is critical. The DML and the query language of a traditional commercial
DBMS give the application programmer no way to formulate the questions. The
only option is to "circumvent" the system by rolling the whole database back to a
point in time at which the version wanted was extant. Then copy the needed
version out of the database to an operation system file. Then roll the database
forward to its current state, and compare the version in the file with the version
in the database. Even then the programmer must know what point in time the
version he wants was extant. There is no way of naming individual versions.
What the programmer really needs are sets containing mutually consistent
versions of several interrelated objects. At best, a programmer is forced to step
outside of the system to do what is needed. At worst, the time involved in rolling
the database back and then rolling it forward again is so prohibitive that the
programmer either builds a version-naming scheme on top of the database, or
does not provide this functionality.

By contrast, O-O DBMSs automatically track the evolution of an object through
successive versions, and lets the user address them using an object-id of the
form:

<conceptual object id>[<version id>].
The <version id> is optional. If it is not supplied, the O-O DBMS should return
the most recent version by default.

The most recent version is normally stored in a fully articulated form. Older
versions are stored using a backward differential representation. This results in
very low storage overhead for older versions. In design support applications it
is not unusual to be able to store the 20th earlier version at a 5% incremental
overhead in storage space.

The O-O DBMS programmer or user has control over when a set of property
value changes is considered significant enough to constitute a new version of
an object. This same control extends to how changing one object affects
related objects. For example, if object X refers to object Y as the value of one of
its properties, does the creation of a new version of Y create a new version of X
as well? The most frequent example of this is in a-part-of hierarchies. When a
new version of a lower-level component in an a-part-of hierarchy is created, the
designer may want new versions to be automatically created at their higher-
level aggregate. An example would be a report consisting of two chapters. A
new version of Chapter 2 has been created. It percolated up the a-part-of
hierarchy to create a new version of the report. Note that the new version of the
report shares the single extant version of Chapter 1 with its predecessor.

106

Enterprise Integration and Management Computing Resources

There are cases when a small change to a low-level component should not
ripple through an entire hierarchy, creating a new version of everything above it.
The O-O model allows the type definer to control when and how far up the type
hierarchy versions are to percolate. Percolation can also be enabled or
disabled on an instance-by-instance basis at run time.

6.9.6.3.2. Alternatives

Each version may have a single predecessor and a single successor (linear
version path), but complex designs often evolve in complex ways. An O-O
DBMS handles design complexity by allowing version paths to fork into
alternatives. Alternatives can be individually addressed using the version-id
scheme introduced earlier. They may, therefore, be individually modified,
compared and contrasted.

A high-level conceptual object like a system design is represented as the root
node of an a-part-of hierarchy that ties it to all of its subordinate module designs
together. The evolution of lower-level objects common to two alternative
versions of the high level object is handled by having both versions of the high-
level object refer to the same versions of lower-level objects. They both
automatically see the most recent versions of lower-level objects as they are
modified.

6.9.6.4. Type Evolution

The interaction between versions and the a-part-of hierarchy allows it to interact
with the an-instance-of hierarchy. This gives an O-O DBMS some unique
strengths while retaining its conceptual simplicity. No new concepts need to be
introduced to handle the evolution of types as well as the evolution of instances.
Each version of an instance is tied to the latest version of the type that existed at
the time the instance was created.

The representation and even the semantics of successive versions of the same
type may change somewhat. There are problems applying operations defined
on a new version of a type to instances of an older version of the type and vice
versa. This becomes particularly troublesome when there are operations that
iterate over all instances of a type, irrespective of the version of that type with
which they were created. An O-O DBMS handles these situations by allowing
the type programmer to define filter operations that will either permanently
convert an older instance to the most recent version of a type, or temporarily
create an alternate representation. Then older or newer versions of the
operations of the type can execute correctly on it.

In some cases this is not possible. For example, a Get_value operation on
properties that were not defined at the time the instance was created and for
which no value has subsequently been stored is impossible. Even in this case,
the notion of a filter operation allows the type programmer to supply a default
operation that will return an UNKNOWN value. This is better than having the

107

Enterprise Integration and Management Computing Resources

DBMS crash due to incompatibilities between the representation assumed by
an operation and the actual representation of the instance involved.

The problem of evolution is very real and costly in large application programs,
particularly those that are successful. Such systems may evolve incrementally
over 3 to 5 years, and may grow to 200,000 lines of baroque code. Even
relatively minor changes may affect tens of modules.

6.9.6.5. Partial Consistency

Concurrency control in business database management systems is based on
the notion of global consistency. A transaction takes the database from one
globally consistent state to another. There may be some temporary
inconsistency during the transaction. For example, during the transfer of funds
from a savings account to a checking account, there is an inconsistency after
the savings account has been debited and before the checking account
credited. This does not change the model, because none of the intermediate
states of the transaction are visible to other users of the database until the
transaction completes.

In a design database this is too restrictive. A design database may not achieve
a globally consistent state for weeks or months. In fact, it may never do so over
the period that it is useful in supporting the design process. The point at which it
achieves consistency is by definition the point at which the design is complete.
At any particular point of its evolution, versions of portions of a design may be
consistent with other portions of the design. However, conventional database
management systems do not keep track of this dynamically changing set of
partial consistencies. The result is building designs where the heating ducts go
through the elevator shafts.

By contrast, an O-O DBMS has facilities that give the builder of design support
applications powerful ways of modeling the constraints, ways that may be
unique to the application. These include declarative specifications of the state
of an operation that require an object on which it is going to operate to be
available before it will execute correctly. They require a notion of consistency
that suffices for tracking the state of particular versions of objects and the
degree to which they are consistent with versions of other objects. These
constraint definition capabilities can be very useful to the builder of a design
support application, because modeling constraints can be as important as
modeling data.

6.9.6.6. Performance

One of the complaints about using conventional database management
systems for engineering design applications is poor performance. O-O DBMSs
provide a higher level of functionality than do conventional database
management systems. Although the usual consequence is a lower level of
performance, there are reasons why performance in an object-based DBMS
can be dramatically better than in a conventional DBMS. One is the knowledge

108

Enterprise Integration and Management Computing Resources

of the semantics of an object type, which allows the type programmer to exploit
constraints unique to that type. The other is the distinction between semantics
and representation, which allows the representation to be tailored for
performance.

Knowing semantics can yield better performance. In a research effort at the
San Jose Research Lab of IBM, a CAD/CAM system was built on top of the
Relational DBMS test vehicle of IBM called SYSTEM-R. One of the principal
stumbling blocks reported in that effort was its poor performance with complex
aggregate objects. Retrieving a simple 4AND gate electronic circuit comprised
of three 2AND gates, required separate access to 22 tuples in 5 separate
relations. If the database was local to the workstation, access time was bad. If
the data had to be requested across a LAN from a database server, the time
delays were intolerable. One solution was to add to the relational model a
notion of entities that had unique identifiers. Another was to add a notion of
aggregation, so the designer could specify precisely what lower-level
components comprised a particular circuit. The result was a model like the O-O
DBMS a-part-of hierarchy. The a-part-of abstraction is built into an O-O DBMS,
so the O-O DBMS knows that the 4AND is a composite object. Therefore, it can
be brought into memory or retrieved from a shared database server as a whole
with a single request, not dozens of individual requests.

Keeping the distinction between semantics and representation straight allows
tailoring representations for performance. O-O DBMSs support different
representations for different types, different representations for different
instances of the same type, and single instances that may have two
representations at once.

Each of these has important performance implications. Conventional database
management systems have no notion of semantics. They support only a single
representation of type: "record." For many kinds of objects, like text and
graphics, record is a hopelessly inappropriate representation. Attempts to apply
relational database management systems to office automation applications are
embarrassing. People try making a record out of each character, stuff a fixed
number of characters in the successive fields of a set of records (ORACLE), put
into the field of a record a pointer to a Unix file containing the text (INGRES,
IDB), or to break the model and introduce another storage type ("blobs" in JRD).

A system that allows each type to build its representation out of whatever lower-
level types are appropriate is required. O-O DBMSs supply a rich set of low-
level representation types (structure, array, set) as well as a suite of higher-level
representation types tailored to graphics and text_pixel_array, descriptor_list,
text_block, etc. The type programmer is free to define type-specific
representations that are efficient for the types of objects involved, e.g.,
pixel_array for raster images that are going to be manipulated with BITBLT
operations.

It is also possible for the type programmer to define two or more alternate
representations for a type. Any given instance of that type may be based on

109

Enterprise Integration and Management Computing Resources

either of these representations. This allows efficient handling of cases in which
the instance-level variation is large enough to warrant separate performance
treatment. For example, the default representation for small sets might be a
linked list, but when the set grows to several thousand members, a B-tree
representation may be more efficient. The type programmer can specify
daemon routines that automatically convert an instance from one representation
to another when the second representation becomes more efficient.

Another advantage of O-O DBMs is that they allow a single instance of a type to
have two or more representations simultaneously and vector operations to
whichever representation is the more efficient. A good example is nodes in the
image composition tree representing a complex picture. If the subpictures the
nodes represent can be stored as both raster-images and descriptor-images,
then operations such as Move can be done quickly with graphics processor
hardware on the raster-image. The descriptor-image representation could be
revised after the fact. Essentially one representation could act as a cached
version of another, capitalizing on the different performance possibilities of
different operations defined on the same type.

The data structures used to represent objects are stored Object Memory. Object
Memory consists of a per-workstation Active Memory, and a per-network
Inactive Memory. Inactive Memory is logically global to the network. Physically,
it is partitioned into areas, each of which is mapped to a partition on a disk pack
mounted on some node of the net.

The implementation of Active Memory has a large impact on performance.
Active Memory is implemented as a shared virtual memory segment mapped
into the address space of all processes on the workstation that are using the O-
O DBMS. There is no IPC or context switch overhead when making a database
call. There is no "copying" of data from DBMS buffers into application program
buffers, or "piping" of records from DBMS to application. This can make a
dramatic difference in performance. An IPC call in Unix takes 10-14
milliseconds, in VMS 7 milliseconds or AOS 10 ms – nearly one-third of a disk
access.

Protection is traded for performance. Since object memory is mapped directly
into the virtual memory address space of the processes using them, it is
possible for an errant application program to overwrite the representation of
objects in active memory. This concession makes sense because the O-O
DBMS will not be something that is directly available to end-users. The O-O
DBMS is distributed as a foundation on top of which the application builder
constructs a discipline-specific application (e.g., semi-custom VLSI design,
Structural Design). The designer interacts with the application. The application
interacts with the O-O DBMS. In this sense, the environment in which the Object
Manager executes is a closed one. The application developer will presumably
have eliminated any problems with the system before its delivery to customers.
They should be comfortable that the software no longer needs to be protected
from itself.

110

Enterprise Integration and Management Computing Resources

During the development stage, the application builder may prefer to make the
opposite trade - protection for performance. This option is provided in O-O
DBMSs. The O-O DBMS may be invoked as a separate process. Its
applications are linked with a checkout library that makes IPC calls to the O-O
DBMS. In this case, object memory is mapped into the address space of the O-
O DBMS. It is not directly accessible to the application process.

Programming with type managers that export a well-defined set of operations,
but do not make the representation of the object visible outside of the type
manager tends to result in significantly more error-free code. Getting an
application to compile using a strongly-typed object-based language takes
longer than with a more permissive language. However, once it compiles, it
runs. The 50-60% of the program development cycle usually spent on
debugging shrinks to 10-20%.

6.9.6.7. Object-Oriented DBMS Applications

The following application descriptions exemplify the advantages of O-O
DBMSs. They indicate that the programs that implement design support
applications can be much smaller than they would otherwise have to be using
older, less functional graphics modeling systems. Consequently, these design
support applications can be brought to market in less time with more
functionality and with lower maintenance and enhancement costs over the life
of the application.

6.9.6.7.1. Graphics

Some O-O DBMSs, like an earlier product from Ontologic called Vbase, have
an extendable, three-dimensional hierarchical graphics subsystem. It serves as
a base for more extensive graphics subsystems written by applications
developers. It also serves as a model of how the O-O DBMS can be used to
integrate display list and pixel graphics with other engineering data
representations.

The O-O DBMS implements a basic set of types (e.g., ENTITY, OBJECT,
PROPERTY, OPERATION, etc.) and exports operations on these types to the
graphics subsystem. The graphics subsystem adds a layer of more specific
types (e.g., WINDOW, CANVAS, DESCRIPTOR_NODE, etc.) and exports
operations on these types to application subsystems. Application subsystems
are implemented as a third layer of still more specific types. One application
may define types used in VLSI design; another may define types used in
Mechanical CAE; a third may define types used in Architectural Engineering
(e.g., BEAM, COLUMN, TRUSS).

At the lowest level of the graphics subsystem, the "drawing primitives" (e.g.,
CIRCLE, LINE, ARC, RECTANGLE) are simply another set of primitive object
types. The type LINE, for instance, has a well defined set of properties (location,
length, line-style, width …) and a small set of operations (draw, undraw …), like

111

Enterprise Integration and Management Computing Resources

the type INTEGER with its properties ('value') and its operations ("add,"
"subtract," "multiply," etc.).

The image composition level of a graphics subsystem is supported by the O-O
DBMS. Hierarchically structured images, instancing support, and the ability to
merge raster-based and vector-based subpictures into a single picture are
provided by abstraction. Hierarchically structured images are based on the a-
part-of relationship. Instancing is based on the an-instance-of relationship. The
ability to merge raster-based images into higher level composite descriptor-
based images is predicated on the a-kind-of relationship.

6.9.6.7.2. High Level Hierarchical Image Composition

There have been three major standardization efforts in vector-based display list
graphics: CORE, GKS, and most recently PHIGS. The CORE standard was
both two-dimensional (2-D) and three-dimensional (3-D), but made little
provision for interactive graphics. The GKS standard was intended for the
emerging interactive graphics tools. It currently defines a 2-D system. A 3-D
extension is under development. PHIGS supports both 2-D and 3-D and is also
interactive. Its principal departure from the earlier standards is that where both
CORE and GKS build images out of a flat collection of segments, PHIGS allows
segments to be structured into a multi-level image.

In all three standards a picture is built-up from segments. Segments consist of a
series of drawing primitives (instructions to a graphics processor to draw lines,
fill rectangles, draw polygons, shade areas, etc.). Segments may also contain
attributes and transformations. Attributes determine such things as line color,
line style, the pattern with which surfaces are to be shaded, etc.
Transformations define how the primitives collected into a segment are to be
positioned in the rest of the picture. For example, the drawing primitives that
define a bicycle wheel might be defined in a coordinate space unique to the
wheel. When the wheel drawing is incorporated into the drawing of the entire
bicycle, each wheel has to be positioned within the coordinate system of the
bicycle. It may have to be scaled or rotated as well. These transformations are
termed modeling transformations. Both are conducted by placing a 3x3 (for 2-
D) or 4x4 (for 3-D) matrix into the first entry of the segment.

In either of the two older graphics systems, CORE or GKS, the stored graphics
model (the "descriptor list") is not capable of reflecting that hierarchical
decomposition. A CORE or GKS image is created out of a flat series of
segments. Each is logically a leaf node of the image hierarchy. If the
application builder wants to provide the ability to move a subpicture (e.g.,
change the angle of the front fork and move the front wheel forward 8
millimeters), the application program will have to remember which drawing
segments were involved in the wheel. It must adjust the transformation matrices
at the head of each of these segments accordingly. The structural
decomposition of the picture must be maintained by the program, either in a
separate data structure, or in the logic of the subroutine calling structure. It
cannot be carried by the declarative structure of the display list.

112

Enterprise Integration and Management Computing Resources

In PHIGS, the display list assumes this function. It is possible to create a
hierarchy of segments that decompose the drawing in exactly the same way the
object itself is decomposed. Transformation information is "inherited" down the
hierarchy. The position of the spoke holes in the hub is defined relative to the
coordinate system of the hub. The position of the hub is defined relative to the
coordinate system of the wheel. This makes it simpler to move/delete/replace
entire subtrees within the picture. This is a very frequent operation in design
support systems. It allows the designer using the system to modify his design
by modifying the picture through which the design is presented to him.

Such applications often involve 100,000-200,000 lines of code and represent
40-50 man years of programming. If the underlying graphics modeling system
provides direct support for creating pictures as hierarchies, the cost to construct
new applications can be radically lower, and time-to-market radically shorter.

In the PHIGS draft standard, the structure of a picture display list is not limited to
a strict hierarchy. If the same sub-object appears in the picture several times, it
need be represented but once as a single segment. The positioning
information that controls how it is "instanced" into the larger picture is detached
from the segment proper. It is logically attached to the relationships between
the shared object and the objects of which it is a part.

This capability is provided by way of the abstraction capability underlying the
graphics subsystem. For example, the arcs from node to node are an a-part-of
relationship (or conversely, the Consists-Of relationship depending on whether
you are looking up from the spoke or down from the wheel). Position
information can be attached to that relationship by way of the type hierarchy:
RELATIONSHIPs are a-kind-of PROPERTY. PROPERTIES are a-kind-of
ENTITY, and any ENTITY can have PROPERTIES. Therefore RELATIONSHIPs
can have PROPERTIES. In this case the transformation information that
controls how the coordinate system in which the spokes are defined is mapped
into the coordinate system in which the wheel as a whole is defined.

6.9.6.7.3. Integration of Vector and Raster Graphics

There have historically been two approaches to graphics: traditional vector-
oriented, display list graphics, and the newer Xerox STAR style of graphics.
They arose from different technologies. Display List graphics originated in the
time of stroke vector graphics terminals. The primitives of display list graphics
are line, rectangle, etc. These are combined into segments for display. Image
composition is done by placing matrices at the head of each segment. These
matrices define how the coordinates of the primitives in the segment are to be
mapped into the coordinates of the image.

At Xerox's Palo Alto Research Center, a different way of looking at graphics was
defined in the 70s by the BITBLT operation. The Xerox workstation prototypes
had large bit-mapped displays. Pictures were inherently thought of as arrays of
pixel values. Images were composed by pasting pixel arrays together and

113

Enterprise Integration and Management Computing Resources

combining them with logical functions (and/or, xor,...). This was particularly
natural for text. Rather than drawing each character as dozens of small lines,
each character was defined as an array of pixel values (a different array for
each font and size combination). These arrays were then copied into rows to
develop lines of text.

Since memory is linear, what was intended to appear on the screen as a single
rectangular block of pixels, could not be stored in memory as a rectangle.
Pasting one conceptual rectangle beside another required fairly sophisticated
support to deal with the internal representation of the pixel arrays. This was
encapsulated in the BITBLT instruction. It first appeared in the Xerox Alto in the
early '70s and has since become a standard feature of most raster graphics
terminals and workstations, whether in microcode or silicon. The Xerox style of
graphics (windows, menus, icons) saw its first commercial use in the Xerox
STAR. Mass market penetration came the next year with the Apple Macintosh.

Unfortunately, these two styles of graphics are still desperate. It is not
infrequent to find a Window Manager in the style of the Xerox model, and a
CORE package that supports display list graphics. Unfortunately, there is no
way of incorporating subpictures defined as pixel arrays into the display list
hierarchy.

In an O-O DBMS, these two styles of graphics can be smoothly integrated. As
was noted earlier, pictures can be defined as a tree of segments. The key
difference between this and the display list technology is that the nodes are not
restricted to be descriptor lists. They may be either descriptor lists or pixel
arrays.

6.9.6.7.4. Libraries of Pre-Defined Types

Many design support applications give the designer access to libraries of pre-
defined components. These libraries typically contain drawings of the
components, or may contain the 3-D geometry information from which drawings
can be derived. The designer then "instances" these pre-defined components
into the image, always by giving them a particular position in the drawing,
sometimes by scaling or rotating them as well.

Common examples are libraries of chip types in logic design applications. The
library may define several different types of memory chips of different capacity
(64 Kb, 256 Kb), different configurations (64K by 1, 16K by 4), different
performance, different electrical characteristics, different heat dissipation. The
designer of a memory array card selects the most suitable chip type from the
library and creates instances of it in the design.

The templates stored in the library are called types. The individuals placed into
the design are instances of those types. The types define the properties carried
by instances of the type. Instances define values for these properties. In some
cases, the type may constrain the range of property values that are legal for an
instance (e.g., power dissipation of 20-40 milliamperes). This makes the

114

Enterprise Integration and Management Computing Resources

specific value a function of how the designer chooses to use the instance in the
particular design. In other cases it may specify a value that is true for all
instances of the type (e.g., width 0.04 mm, height 1.20 mm). This is an example
of the an-instance-of relationship discussed earlier combined with property-
value constraints and type-defined property values.

The a-kind-of abstraction is also central to the library notion. For example, chip
libraries may contain literally hundreds of different chips. A common way of
organizing them is to group them into a-kind-of hierarchies. Then a designer
can find a set of chips of potential interest and select the most appropriate chip.

If the selected chip type is used several times in the design, the lattice structured
a-part-of and a-kind-of relationships are useful. For example, on a memory
array card there may be several dozen instances of the same chip type, each
driven exactly the same way. They differ only in their location on the board. If
the display list representation extracts the positioning information as part of the
a-part-of relationship between the board and the chips it contains. Then the
same display list segment can be used to draw all the chips.

6.9.7. Data Dictionary

To avoid confusion, the names and meaning of data must be understood. This
is data about data, metadata. Metadata provides the unique identity of data and
its units (inches, meters) so that it will be properly used.

Metadata is usually kept in a data dictionary for coordinating application
development, particularly the avoidance of redundant data entities. The data
that must be known to a data dictionary for it to be effective, need only be that
which is shared among computer tools. The dictionary must contain metadata
about independently developed computer-based tools. Hence, it must
accommodate data with the same name but different meanings (synonyms).
This is usually done by using the tool name as a prefix for the data name to
identify it uniquely. Conversely, the data dictionary must accommodate data
with different names but the same meaning (homonyms). This is usually done
by way of aliases. Since product description data "evolves," the data dictionary
must accommodate versions of data with the same name and description.

The data dictionary must be "active" if it is to be aware of new data as it is
defined. Before data is saved for the first time on a local storage device by a
tool, the tool must provide the name and description of the data to the data
dictionary. If the name or the description indicates that the data exists, the tool
should so notify its user, and give the user the opportunity to change the name,
description or version of the data before re-invoking the save command. If there
is a conflict with the information in the data dictionary, then the metadata cannot
be registered with the data dictionary. The tool is not allowed to store the data.

A data dictionary can also be used to manage product data, but in either case, a
data dictionary is most useful when it is used with a data directory.

115

Enterprise Integration and Management Computing Resources

6.9.8. Data Directory

Should any human or computer resource want to access data, they need to
know where to look for it. A data directory provides that service. It should
indicate the

network,
node (computer) in the network,
storage device (disk) on that node,
file on the storage device and
field or object

in which the data is to be found. In some cases, the nodes maintain internal
path names, so the data directory need only concern itself with the node. If a
data request is presented to such a node, the node computer will find the
requested data according to its internal directory.

The data directory must be "active". It must be made aware of the location of
new data as soon as it is stored.

The use of a data directory need not be restricted to digital data. Some data like
sound and image data may be more effectively stored on audio or video tape or
film. Legacy and other data may not be in digital form. It may remain on paper
or microfilm indefinitely, but must be maintained as part of the product definition
for products that are still in service.

Data names are redundant to data dictionaries and directories, and their
interaction with tools is similar. Consequently, data dictionary and directory
functions are often combined into one tool called a data dictionary/directory. A
data dictionary/directory can be used to manage the product and tool data.

A separate data/dictionary should be used for each Program. Appending the
Program name to a data entity is a simple way of distinguishing enterprise data
among multiple Programs. It avoids the bureaucracy involved with reconciling
entity names among Programs.

116

Enterprise Integration and Management Computing Resources

6.9.9. Machines

Computers are used to manipulate machines as well as displays. There are a
wide variety of computer controllable machines (mills, lathes, robots, missiles,
automobiles, etc.). Each machine model has a unique controller.

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

TOOL RESOURCES

Display
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

Controller

Data Mgmt.
Services

Consequently, the specific instructions for a controller are generated (post-
processed) from a general representation of machine motion. The Compact II
and Automatic Programmed Tool (APT) programming languages are commonly
used to create generic tool motions and specify machine settings (feed, speed,
coolant). The machines themselves are described in the Machine Resources
section.

6.9.10. Tools

Tools conduct or help human resources conduct work. Tools that help define
and coordinate the work are required in addition to the tools needed develop
deliverables.

Data Mgmt.
Services

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

TOOL RESOURCES

Display
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

Controller

These tools are described in the Tool Resources section. A synergistic benefit
can be derived from integrating their use.

6.9.10.1. Tool Integration

Efforts to integrate tools were naturally organized along manufacturing lines of
demarcation. Software, electronic/electrical and structural/mechanical products

117

Enterprise Integration and Management Computing Resources

have distinctly different manufacturing processes. Tool domains were the result
of this orientation.

Controller

MACHINES
Peripheral nKeyboardSoftware

Tools

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

Display
Services

Data Mgmt.
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

Controller

Electrical
Tools

Structural
Tools

Display

These domains of integration are aggregations of smaller domains organized
along disciplinary and sub-disciplinary lines of demarcation. Within the
structural domain for example, aeronautical engineering integrated their tools.
Within aeronautical engineering the subsonic, transonic and supersonic tools
were often integrated separately. Within the software domain, Computer Aided
Software Engineering (CASE) tools were integrated as a function of the
software language (FORTRAN, COBOL, C, etc.).

Sometimes this integration takes the form of a single, large software tool with
many different functions. For example, a vendor of tools for electronic systems
may try to integrate printed circuit board layout, analysis and packaging into a
single tool. Each function is a different subroutine or set of subroutines in a
single computer program (software tool).

This approach soon becomes cumbersome and costly to maintain. Even if
portions of a tool can be separately compiled and debugged, they have to be
linked with the remainder of the program before the entire tool can be
exercised. As each area (design, analysis, manufacturing) became a
sophisticated speciality, separate tools were developed for each discipline in
each domain. As a result, each part of the organization of an enterprise could
do their job well, but there was no net benefit to the enterprise. The benefits
gained by the isolated tools were lost in the effort to transfer data among the
tools, or from tools to human resources without computer tools, or vice versa.

This predicament prompted attempts to automate the transfer of data among the
tools. This it called tool interfacing. There are various degrees of tool
interfacing from file conversion to common databases.

In every case, the tool deals directly with the computer on which it is hosted.
The tool vendor must re-host the tool onto other computers to expand the
market for the tool. Tool customers must buy new computers to have a place to
host tools that will not run on their existing computers. This predicament
prompted the call for a standard operating system and the move to Unix as the
de facto standard.

118

Enterprise Integration and Management Computing Resources

To further improve the net benefit to the enterprise, the elimination of any slack
time is becoming more important ("fast cycle," "time to market"). Slack time is
the period between the availability of data and its use by a subsequent function
in the business process. This requires some degree of tool control.
Autonomous (batch) and interactive tools must be automatically invoked. Their
termination must be detected. The preparation and dispersal of their data must
be automated. This is called tool integration.

Key benefits of integrated tools are data consistency and the elimination or
mitigation of redundant data entry by human resources. For example, a
designer need not notify a data dictionary/directory tool of the existence of a
new model or inform a scheduling tool that a task has begun. In an integrated
environment, the very act of creating a new model with a design tool and saving
its file for the first time would trigger a query for additional model, file or task
attributes. The meeting of those constraints would trigger the automatic
notification of the data dictionary/directory and the scheduling tools.

The data of unintegrated tools is usually inconsistent, because from the
perspective of a designer, the "real world" is the design tool. It is not some
annoying product data or process management tool. Consequently, the data of
what are felt to be superfluous tools is not updated regularly. It is periodically
not representative of the reality of the designer.

There are various degrees of tool integration from a library of programming
functions to formal application programming interfaces to frameworks. The
more sophisticated forms of tool integration involve an intervening layer of
software that isolates the tools from the computing and data management
environments. Although this eliminates the need for a standard operating
system from the perspective of tool vendors and users, a standard operating
system would simplify the task of developing tool integration environments.

Tool Interfacing and Tool Integration and their various implementations are
described in the following sections.

6.9.10.2. Tool Interfacing

Tools may be interfaced by way of entire files or the data therein.

6.9.10.2.1. File Transfer

Tools may be interfaced by transferring files among the tools. This tool
interfacing approach requires no modification of existing programs. It may
require the development of data format conversion utilities. These may be
treated as separate tools or as part of a tool (subroutine). There are various
ways to transfer files.

119

Enterprise Integration and Management Computing Resources

6.9.10.2.1.1. Reformatting Utility

Tools may be interfaced by copying and converting data by way of an
intermediate data format conversion utility to the specific format of each tool.
Such utilities are usually unidirectional. They import or export files, not both.

The utility must know the position of the data in the file and perform any
necessary units conversion. It may have to operate mathematically on the data
and combine it with other data or otherwise manipulate it to make it be exactly
as the using tool expects.

This approach is the most common. It requires import and export data format
conversion utilities for every pair of tools so interfaced. All affected data format
conversion utilities must be changed each time the data format of a tool is
changed. This may also require that the data access method of the other tool of
the interfaced pair be changed. Although the cost to implement may be
relatively low (no concurrence among tool developers required), the cost to
maintain reformatting utilities is high.

6.9.10.2.1.2. Neutral Format

The need for a data format conversion utility for every tool pair can be reduced
with international or de facto file exchange standards. This approach requires
each tool vendor to provide conversion utilities for importing and exporting data
in the neutral format. Applications of data are unpredictable, so such neutral file
formats must be robust to be comprehensive.

The Initial Graphics Exchange Specification (IGES) is an approved U.S.A. and
European standard for the transfer of the geometric and drafting data typical of
structural/mechanical Computer Aided Design, Computer Aided Drafting,
Computer Aided Analysis, Computer Aided Engineering and Computer Aided
Manufacturing systems (tool sets). The Electronic Data Interchange (EDI) is an
international format for electronic data transfer among dissimilar electronic
design and analysis tools.

TIFF, PICT and MacPaint™ are three of the many viable de facto graphics data
transfer standards for bit-mapped (paint and video) images and line (arc,
circle...) drawings. Many popular graphics programs (MacDraw™, Canvas™,
Superpaint™, ColorEyes™) will import more than one or more foreign formats.
Similarly, MacWrite™ and Word™ have become de facto text processing
standards and many text editors or word processors will import their formats.
For example, SoundEdit™ is a de facto standard for storing and transferring
sound files.

6.9.10.2.2. Data Transfer

Tools may be interfaced by transferring a portion of a file – data. Data may span
more than one file. This tool interfacing approach usually requires some
modification of existing programs, but allows a lower granularity of data to be

120

Enterprise Integration and Management Computing Resources

transferred. An entire file does not have to be converted to an acceptable
format. Only that portion of the file that is required, needs to be reformatted.
There are various ways to transfer data.

6.9.10.2.2.1. Cut-And-Paste

An interactive form of data transfer is the cut-and-paste method of manually
selecting a portion of a text or graphic file and cutting or copying it to a
temporary holding area (clipboard); then pasting the contents of the clipboard
into a different file. This is an intuitive, easy to learn method of data transfer
made popular by the Macintosh computer, but it requires a human operator.

6.9.10.2.2.2. Live Links

By providing the path name (network and file address) of pasted data to a tool
that keeps track of such information, a live link can be maintained between the
source and target documents. It can insure that the target document has the
most current data (Excel spreadsheet or MacDraw graphic pasted into Word
document). Each time the source file of pasted data is changed, the pasted
portion is automatically updated in the target document. This avoids the
necessity of having to repeat the cut-and-paste operation manually each time a
source document is changed.

6.9.10.2.2.3. Common Database Access Method

Access routines that use the Standard Query Language (SQL) can access the
data of any database management system that supports SQL. Using vendor
extensions to SQL will eliminate this versatility. Unless data administration is
performed rigorously, independently developed tools will seldom have the
same name for identical data. SQL routines developed later must use the data
name appropriate for each system it searches. If the data names or path name
changes, the access tools must be modified, accordingly. This is similar to the
problems associated with the file transfer method, but it involves only the data
transferred, not the entire file.

One way to compensate for different data names is to have the tool first query a
data dictionary to determine what data name aliases exist. Then have it
incorporate any found aliases into its query or update. With this approach, new
tools or their modifications should not be implemented until the data dictionary
data is made current. This delay can be avoided with the use of an active data
dictionary. The degradation to tool performance resulting from the extra query
cannot be avoided.

One way to compensate for different path names is to use a data directory in a
manner like that described for the use of a data dictionary. Some data
dictionaries include directory (where used) information. Although the use of a
dictionary/directory simplifies tool development and maintenance, it does not
improve tool performance. Furthermore, a staff of human resources must
maintain the metadata in the data dictionary and/or directory accurately.

121

Enterprise Integration and Management Computing Resources

Data dictionary and/or directories may be "active". Like live links between the
files, links can be established between tools and a data dictionary and/or
directory This would automate the update of the metadata whenever a tool is
modified. It reduces, but does not eliminate the data dictionary and/or directory
maintenance.

SQL is a data manipulation language. It is not a data definition language. It
provides no means for a tool to create new data of a type not already defined.
The data definition language of the source tool must be used to define new
data.

6.9.10.2.2.4. Data Format Standard

PDES/STEP is an evolving standard for defining product data schema. This
standard is part of the Computer Aided Acquisition and Logistics Support
(CALS) initiative. Under the CALS initiative the U.S. government will require
contractors to support the transfer of digital data among contractors and DoD
organizations, including operational units.

The PDES implementation plan identifies four levels of capability. The first two
levels of the PDES implementation are extensions of IGES. The third level is
direct data access by way of database management systems. The fourth level
will support knowledgebase related access, like that required by expert
systems. Proprietary data is not inherently protected from this method of data
exchange if direct access, like that promoted by DoD, is granted. Until the issue
of protecting proprietary data is adequately addressed by PDES, the data of
one company should be selectively duplicated onto an isolation computer for
access by DoD or other companies. The isolation computer is physically
disconnected from the outside world and then connected to the resources of a
company. The pertinent data is transferred to the isolation computer. The
isolation computer is then disconnected from the inside world and connected to
the outside world for access by DoD or other companies

Many PDES/STEP proponents advocate PDES/STEP as the native data format
for new tools (common DBMS approach). The disadvantage of this approach is
that it will hamper innovation. Tool performance may suffer if a sub-optimal data
storage method is used. For these reasons, most tool vendors are planning to
provide data reformatting utilities to import or export data in PDES/STEP format,
yet retain the storage formats that are optimum for their products.

Another CALS requirement is the Standard Generalized Markup Language
(SGML). It is to be supported by all tools that create documentation (text and
two-dimensional graphics) that may need to be transferred. Until SGML is
widely supported, other transfer standards may be used for text and graphic
data as described in the Neutral Format section.

122

Enterprise Integration and Management Computing Resources

6.9.10.2.2.5. Common Database Management System

More data integration can be achieved by having the software tools use the
same DBMS rather than a common file format or a common data schema. This
approach requires extensive modification of existing tools. This approach is
most appropriate to new suites of tools. This approach minimizes normal
maintenance, but the cost of changing DBMSs is such that it is often not done
when it should be for the tools to remain competitive.

6.9.10.3. Tool Integration Approaches

As noted previously, the computer is assuming more and more of the functions
that had been developed for each application program (computer tool). As the
degree of tool integration increases, higher-level data management and tool
control services are being provided as part of the computing resource. These
services are normalized across different brands of computers by tool interface
environments that run in such a heterogeneous computing environment.

Tool Interface

Software TOOLS 1-n

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

Display
Services

Data Mgmt.
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

Controller

The Tool Interface layer may be implemented as a proprietary development
standard within a company or as an international standard. It may have various
degrees of sophistication.

6.9.10.3.1. Application Programming Interface (API)

All the tool interface methods described thus far exclude any means of tool
control. SQL is an example of a relatively standard API, but it is limited to data
manipulation. Most APIs include various high-level routines for data definition,
display and tool control as well as manipulation.

APIs that include high-level, yet useful routines, are usually the most successful.
If the APIs simplify the overall programming task, it is in the interest of the
programmer to use them. More sophisticated tool integration efforts require
more sophisticated APIs, like those that support triggers and constraints. For
example, the invocation of a tool may be pre-defined to occur upon the
termination of a predecessor tool in a process or upon the appearance of
certain data or a change in its status.

123

Enterprise Integration and Management Computing Resources

Tool developers have tried to satisfy all the needs of their discipline oriented
customers with ever larger tool sets amassed from a combination of proprietary
and third-party tools. The most successful vendor was the one with the most
complete set of integrated tools. Each tool developer devised a proprietary AIS
to reduce the cost of tool integration and maintenance.

Eventually some tool providers realized they could not provide all of the
functions their customers desired and stay apace of the technical evolution of
the tools. Those with an established API made it available to third party tool
developers. The high level routines available with the API reduced the tool
development cost to the third party tool developers. They accelerated the
expansion of integrated tools that could be marketed by the vendor with the API.

Mentor Graphics adopted this approach from its inception for its integrated
electronic Computer Aided Engineering (CAE - design and analysis)
environment. Atherton Technologies created the Atherton Tool Interface
Standard (ATIS) as an API specifically for the Ada Computer-Aided Software
Engineering (CASE) environment. It does software configuration management
according to MIL-STD 2167A. Rockwell has promoted the integration of the
Digital VAXset of software development tools into the Atherton framework.

Digital Equipment Corporation worked with Atherton Technologies to make
Atherton's API more robust. The result of that work, A Tool Interface Standard
(ATIS) is promoted by DEC as an international standard. Both have made their
API's "open" to encourage their adoption as an international standard.

DEC offered ATIS to various standards bodies for acceptance as a standard for
tool integration. The CASE Information Services (CIS) industry consortium was
created to refine the ATIS standard. It was submitted to the X3H4 ANSI
standards committee. The CIS represents 30 CASE user and computer
companies. The ATIS was endorsed as the working document for the
Information Resource Dictionary System (IRDS) by the members of the
American National Standard X3.138 committee. The IRDS is supported by a
single layer within the ATIS. The government (CALS) demand for IRDS is
keeping the committee purposeful.

The CIS is considering the relationship of ATIS to various proprietary systems
such as Mentor Graphic's Concurrent Design Environment (CDE). The CIS is
also considering layering the ATIS on the Portable Common Tools Environment
(PCTE) standard being developed by the European Computer Manufacturer's
Association (ECMA) for the Unix environment.

Like other vendors, DEC is complementing the basic data access and control
provided by its API with an Integrated Project Support Environment (IPSE). The
IPSE provides even higher level data structure definition and manipulation
facilities, including comprehensive version control and configuration
management services. The IPSE concept and thrust are primarily directed at
the CASE environment, but is applicable to the other application areas
(electrical/electronic and structure/mechanical) as well.

124

Enterprise Integration and Management Computing Resources

Recently the API approach has appealed to the structural/mechanical
disciplines as a way to integrate their tools. Efforts are underway to take
advantage of the configuration management and version control facilities of the
APIs and IPSEs developed for software, and apply them to the
structural/mechanical tool integration problem (SDS of Matra DataVision).

This is a favorable trend for many businesses whose products involve a
combination of many system types (software, electrical, electronic, structural,
mechanical, hydraulic, etc.). "Islands of automation" have grown around each
discipline. They improve the performance of each business function, but
demonstrate little net benefit, because the islands are not interfaced. The
islands must be blended and their tools integrated.

If multiple vendors are to integrate their tools into a cooperative set for these
businesses, they must agree on a standard API (ATIS, Revision 8 of Mentor
Graphics). If they want their tools to be easier to learn and use, they must agree
on a user interface convention ("Mac-like").

The success of the Macintosh environment has prompted many to examine tool
functions to determine what else may be sufficiently common to warrant the
development of a common support environment, one that goes beyond that of
the Macintosh computer. Though perhaps less common than the Macintosh
Open, New, Save, Save-as, Cut, Copy, Paste and Duplicate functions, there
are, in fact, many significant functions that are common to many tools. These
include data display, version control and configuration management. The
degree of computing resource interaction required to support this degree of
integration sophistication has prompted the emergence of frameworks or
backplanes.

125

Enterprise Integration and Management Computing Resources

6.9.10.3.2. Frameworks

Electronic assemblies on printed circuit boards plug into computer backplanes
so they can exchange data and control information through a standard bus.
Frameworks allow software tools to be "plugged" into them to share data and
coordinate their actions through a sophisticated API. The appeal of frameworks
is that the tools can easily be unplugged and replaced with better tools as they
become available. This not only makes the enterprise with a framework more
adaptable to the changing needs of its marketplace, but also reduces the cost of
implementing new tools. This is especially true if the framework encourages a
consistent user interface.

Software TOOLS 1-n

Controller

MACHINES
Peripheral nKeyboardDisplay

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

Display
Services

Data Mgmt.
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

ControllerFramework

A framework is a further expansion of the shared display and data management
services described thus far. These services continue to evolve as a function of
technology and standards.

The framework is based on conventional computing resources. At least one
computer with an operating system, database management system, and input
(keyboard, mouse), output (display) and storage devices (disk) is required to
support a framework. Some frameworks can utilize multiple different database
management systems as appropriate for the tool set in the framework. If more
than one computer is involved, they must be able to communicate with one
another via a data communications network. It is through the input and output
devices that human resources interact with the framework and their tools. It is
through communication adapters that machine controllers interact with the
framework and the tools.

In order for tools and humans to access and use objects, knowledge of their
location and characteristics must be maintained in a dictionary/directory. This
dictionary/directory may be centralized on one node (computer) in the network
or shadow copies of it may be distributed throughout the network. Portions of
the dictionary/directory may be hierarchically distributed. The existence of an
object may be known, but its component objects are only known to a portion of
the dictionary/directory. That portion may be distributed to another node in the
network where the data physically resides. The central dictionary/directory must
query the node with the lower level information to respond to questions posed
about it. Else it must copy the data to another node for complete access.

126

Enterprise Integration and Management Computing Resources

The relationships of objects to one another (parent, child, manifestation,
derivative, originating tool, owner) must also be maintained if objects are to be
used to find other objects. Knowledge of how the objects are individually stored
must also be maintained if they are to be presented together with the proper
view orientations.

Several commonly used services are provided by the framework for tools or
human resources to use. For example, many tools may need to notify human
resources via electronic mail or telephone of tasks started or completed and
their results. Many kinds of data may need to be browsed graphically. To avoid
having to maintain access criteria for each tool, a single access control service
can be used and be maintained.

Common core services like solid modeling kernels, shading algorithms,
graphical display routines and text editors can be made available as libraries of
code for directly linking with an individual tool. For performance reasons, such
core services will likely not be accessible by way of the standard framework
access method (AIS). They will more likely be a collection of high-level
functions that can be called upon by any tool to create or manipulate an object.

The Open Software Foundation (OSF) selected the following technologies to be
among the core services of its Distributed Computing Environment (DCE):

Distributed Name Service (DECdns) is a global directory system for
computer networks is based on the Network Computing System
from Hewlett-Packard. It stores information about objects in the
network. It makes it possible for resources to be used without
knowing their physical location in the network.

Remote Procedure Call (DECrpc) is a programming tool for transparently
distributing applications across a global network. It is based on
the Network Computing System (NCS) from Hewlett-Packard. The
DECrpc extends the NCS functionality in the areas of transport
independence, name service independence, ISO standards
support, and support for large data processing applications.

Distributed Time Service (DECdts) is a fully distributed service from
Digital Equipment Corporation (DEC). It provides precise, fault-
tolerant clock synchronization for systems in local and wide area
networks.

Concert Multi-thread Architecture (CMA) is a set of services that support
the development of efficient client-server parallel processing
applications.

These services provide performance gains by enabling distributed applications
to overlap network activity with other work. They contribute to the
standardization of framework services.

Although the Design Automation Conference (DAC) is primarily concerned with
electronic design, it provides a forum for vendors to display their framework
products and promises. Recognizing the need for framework standards,
attendees of the DAC formed the CAD Framework Initiative (CFI), which is now
an industry consortium (IBM, DEC, HP, Mentor Graphics...). Mentor Graphics

127

Enterprise Integration and Management Computing Resources

participates in the Object Management Group and the CALS test network. The
ATIS model has been presented to the CFI, but Mentor Graphics does not
subscribe to it. The Mentor CASE environment is "totally different" from ATIS.
Although the CFI is considered to be a good idea by all of its participants, there
is no driving force like the government or a strong market demand like OSF to
keep the consortium on a purposeful track. The proliferation of proprietary
frameworks may be evidence of the disarray of the CFI.

There is no equivalent to ATIS for process control. The Concurrent Design
Environment (CDE) of Mentor Graphics is equivalent and elements of EDL from
Control Data Corporation. They provide a proprietary means of process
definition and control.

6.9.10.3.2.1. Encapsulation

The less sophisticated forms of tool integration into frameworks are called
encapsulations. Encapsulation is a means with which to "plug" a tool into a
framework without significantly modifying the tool. The tool is enveloped in a
shell or husk of interface software that makes it appear to the tool that it is still
being invoked by a human resource and is still using its old data management
scheme when in fact it is invoked by the framework and uses the data
management facilities of the framework. An encapsulation can also simplify the
user environment by hiding unnecessary functions and complication by saving
user preferences, saving contexts and automating complex data flows.

If the encapsulation is limited to preparing data for the tool and invoking it, no
modification to the tool is required. Even with such a crude encapsulation, a
Process Manager (see Tool Resources) may restrict the use of the tool and
control its data input. Without modifying the Save command of the tool, the
process manager cannot be informed of what data was outputed from the tool.
A Product Data Manager (see Tool Resources) will be unaware of its
significance to the product definition. Without a modified Quit command, the
process manager is dependent on the action of a human resource to inform it of
the completion of a subtask. A human resource must perform the extra step of
informing the process and product managers.

Encapsulated tools will likely have lower performance, because they will incur
the overhead of the encapsulation software. To minimize this problem,
encapsulated tools can perform data management in the framework at a higher
data object/element level (file or record) than would integrated tools. Integrated
tools perform data management at the low data object/element level (field). The
higher level of data management may be insufficient for proper data integration
among the tools in the framework. This is especially true among the tools
whose data models have common elements or features. Furthermore, the
encapsulation will have to change every time the tool or the framework
changes.

Although encapsulation has its disadvantages, it has the advantage of time. An
existing tool can be plugged into a framework more quickly as an

128

Enterprise Integration and Management Computing Resources

encapsulation. Consequently, existing tools will likely be encapsulated into the
framework first, and later integrated.

This two-step integration process can be avoided with tools that are currently
under development or are undergoing a major revision. Tool developers are
most susceptible to the influence of framework suppliers and buyers. Tool
developers do not want to be in the encapsulation business forever.
Encapsulated tools are far more expensive and less rewarding than are fully
integrated tools.

It is in the interest of framework suppliers and buyers to make the framework
such a success that the tool developers are motivated to integrate with the
framework. Tool integration services should be provided to make it as easy as
possible for tool developers to integrate their tools into a framework.

Some tools will likely always be encapsulated. Special purpose tools will never
have a sufficiently large market to justify the cost of integration. They and those
which require special purpose computers will likely only be encapsulated at the
tool invocation level. For example, framework utilities may be developed to
extract data from the framework and format it specifically for a tool that runs only
on a Cray computer. The framework would transmit the data to the Cray, invoke
the tool on the Cray, collect the results, load them into the framework and
resume integrated operations.

6.9.10.3.2.2. Exits

The next level of tool integration into frameworks involves the edition of user
exits or the minor modification of existing commands like the Save command,
so the Process Manager can be automatically notified of task termination and
the Product Data Manager can be automatically notified of file or data activity.
Then, both can accordingly update their metadata. With this degree of
encapsulation, the Product Data Manager can control the output of a tool, and
where the data is located. An example of the use of user exits is described in
the beginning of the Tool Integration section.

6.9.10.3.2.3. Full Integration

To integrate a tool fully into a framework, extensive modification of the tool will
likely be required. This will allow direct access to low granular data and their
relationships. Control over some of the internal functions of the tool may be
exerted.

Full integration requires that the tool developers replace their user interface with
one which is a framework standard. If the framework standard is ODA/ODIF
Motif or its precursor, X-windows, then this conversion effort is likely already
underway or complete for the tool vendors who are aggressively trying to
expand the market for their tools. They already support windowing standards,
regardless of the operating system.

129

Enterprise Integration and Management Computing Resources

This is a major effort however, and may have significant performance
implications. Many tool vendors are resisting complete integration and opting
for what is essentially active metadata integration. In this case, the tool uses the
framework to find files or large objects and informs the framework of the
existence of new files and large objects, but it uses proprietary data
management services to manipulate its small objects (solid primitives, surfaces,
edges). For example, the existence of a part created using a solid modeling
tool may be made known to the framework, but the constructive solid
components of the part may only be known to the solid modeling tool.

In most cases data management above the level of features (arbitrary
collections of boundary elements) will be adequate. The feature relationships
among dissimilar tools will not need to be retained. For example, a printed
circuit assembly may be mounted to a relatively rigid structure. Since the
thermal expansion coefficient for the structure differs from that of the printed
circuit board, thermal and structural analyses are performed to insure that this
situation does not cause the board to warp and its circuits to crack as the printed
circuit assembly warms. The hole features of the printed circuit board, defined
as circles in an electrical CAD system, will be converted to a cylindrical
boundary elements when the circuit board is converted to a solid model in a
mechanical CAD system for packaging purposes. The hole feature is directly
related to the threaded cylinder feature of the screw that goes through it, and
indirectly by way of the screw to the threaded hole feature in the boss on the
structure that supports the printed circuit board. The model is defined entirely in
one tool before it is modeled for the analysis. The result of this analysis may be
that the holes have to be larger and the screws tightened with less force to allow
the board to move as it expands relative to its supporting structure. This
knowledge can be communicated to the circuit board and structure designers
so they may accordingly change their designs.

Eventually however, data at the level of features of parts will have to be
maintained in the framework, or at least related within the framework if they are
separately retained in the databases of the tools. For example, the hole feature
of the aforementioned printed circuit board may be used as a ground or thermal
sink. In this circumstance, it should be directly related to the cylinder/cap
feature of the screw that goes through it and indirectly related by way of the
screw to the threaded hole feature in the boss. The effect of the structure on the
electrical and thermal dissipation of the printed circuit board can then be
properly simulated. In this case, conductivity attributes would also have to be
associated with these feature relationships.

The inconsistent availability of low level (feature) data will adversely impact the
usefulness of shared data. Having the data of one tool available at the feature
level is of little value if the data of a tool with which it must share data is only
available at the part level. Tool integration efforts should be performed in a
manner that promotes a consistent increase in the granularity of data among the
various tools that may share it.

130

Enterprise Integration and Management Computing Resources

6.9.10.3.2.4. Advantages

The added cost of integrating a tool into a framework is offset by several factors.
Firstly, someone is more likely to buy a tool if it is integrated with other tools.
Secondly, a lot of software that would normally have to be developed,
maintained and distributed with each new release of a tool need only be called
from among the many framework services. Thirdly, if the API used by the
framework is a standard used by other frameworks, then the market for the tool
will expand to include that of all such frameworks and all of the computers on
which they run.

What of the effort invested in porting tools to Unix? What about those customers
who are not yet or may never be framework advocates?

Porting to Unix may not be in vain. It is not yet clear whether frameworks or
APIs will ever completely shield tools from operating systems. Furthermore,
some tools and their Unix computer may be treated as a unit (composite object)
by a framework. The framework may package data and commands, send them
to the computer/tool, retrieve the results and unpackage them for use by other
tools in the framework. This would be especially true of batch programs.

The push for Unix may also not be in vain. Unix is important to cost-effective
framework portability.

Tool vendors will have the best of both the framework and non-framework
worlds if the framework suppliers make their frameworks portable and license
their framework to the tool vendors. Then the tool vendors can continue to sell
their tools to non-framework customers as if the tool were still independent of a
framework when it is in fact fully integrated into a framework.

6.9.10.3.2.5. Applied to Data Transfer To/From
Subcontractors

Ideally, the computing resources of subcontractors should be integrated with the
computing resources of their prime contractor (system integrator) to the extent
that their contributions to the process cannot be distinguished from any other
function of the enterprise. They should interact directly with the framework of
the prime contractor.

Text, binary and bit-mapped (facsimile) files would be exchanged via electronic
mail. The data would include Request for Quote (REQ), Response to RFQ,
Purchase Order, Purchase Order Acknowledgement, Order Status, Shipping
Notice and Request For Assistance (RFA) information. If the contracted work
entailed design, then the subcontractor would have access to the digital models
that constrain the design. If the contracted work entailed manufacturing, then
the subcontractor would have access to the manufacturing plans and the digital
models from which end-effector motions could be defined.

131

Enterprise Integration and Management Computing Resources

6.9.10.3.2.6. Framework Wars

It was hoped that the operating system war could be ended and some
application program (tool) mobility among computers could be attained by
forcing the computer suppliers to support Unix as a standard operating system.
Then the better price/performance computers could be purchased for the better
tools with little regard for computer/tool compatibility. As that goal was being
attained, computer vendors reasoned that with Unix and the advent of POSIX,
they could no longer discriminate themselves from one another with their
proprietary computer operating systems. Computer system vendors realize that
software sells computers and integrated tools sell more computers. As
evidenced by the success of Macintosh, tools integrated with no more than
similar Save, Open, Close and Cut and Paste functions (similar "look and feel")
have a favorable impact on computer sales.

For a framework to be successful, it must be widely accepted by tool
developers. To be widely accepted by tool developers, the framework must
provide all of the desired functions and performance. It must be easy to
encapsulate into or integrate tools with the framework. The framework should
not limit the market of the tools. It should expand the market for them.

6.9.10.3.2.6.1. Framework Buyer Dilemma

The framework buyer who considers the structural design tools of Matra
DataVision, the electrical design tools of Mentor Graphics and the software
design tools of Software Through Pictures as the "best of the breed" must
choose less than the best tools, or interface frameworks like Software Through
Pictures, Mentor Graphics and Euclid into a third, enterprise-wide framework.

Controller

MACHINES
Peripheral nKeyboardSoftware

Framework

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

Display
Services

Data Mgmt.
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

Controller

Display

Framework

Electrical
Framework

Structural
Framework

132

Enterprise Integration and Management Computing Resources

One way to avoid this dilemma is to make the ATIS a true international
standard. It would leverage the efforts of tool developers to encapsulate or
integrate their tools into any framework that complied with the standard. It
would broaden the market for the products of the developers who hosted their
tools on an ATIS framework without correspondingly increasing their costs.
This would cause other developers to abandon non-ATIS frameworks for those
that employed the ATIS, which would in-turn force the suppliers of non-ATIS
compliant frameworks to make them ATIS compliant.

Software
Tools

Framework

Electrical
Tools

Structural
Tools

Software
Tools

Framework

Electrical
Tools

Structural
Tools

T
oo

l

. . .

It is in the interest of the framework supplier and buyer to promote to standards
committees and other computer vendor participants the proposed standard on
which the framework is based. It is especially in the interest of the framework
supplier and buyer to promote the proposed standard to the tool developers, not
only to insure that it is chosen as a standard, but also to insure that the standard
will, in fact, be used by the tool developers.

Until ATIS is a standard, the tool buyer who insists on having the better tools
must encapsulate one framework into another or bridge frameworks by way of
interface tools in each framework that communicate and translate between the
frameworks.

Software
Tools

Framework

Electrical
Tools

Structural
Tools

Software
Tools

Framework

Electrical
Tools

Structural
Tools

133

Enterprise Integration and Management Computing Resources

6.9.10.3.2.6.2. Framework Tool Developer Dilemma

If the tool developer wants to continue to serve the traditional non-framework
market and expand into the framework market, the cost may be prohibitive. At
least two products or versions must be maintained.

Framework

M
y

T
oo

l 1

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

Proprietary AIS
or Framework

M
y

T
oo

l 1

M
y

T
oo

l 2

M
y

T
oo

l 2

My Product

Non-Framework Customer Framework Customer

My Product

To avoid this problem, the framework should run on a broad number of
computers, and the framework should be licensed for sale by the tool vendors.

Framework

M
y

T
oo

l 1

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

O
th

er
 to

ol

M
y

T
oo

l 1

M
y

T
oo

l 2

M
y

T
oo

l 2

My Product

Non-Framework Customer Framework Customer

My Product

Framework

This would eliminate the need for tool developers to maintain their tools both in
a framework and as a self-contained product. The framework with just their
tools could be sold by the tool vendor as a self-contained product when it, in
fact, is bundled within a framework. Obviously, the single vendor tool set
framework license should be restricted to the tools of the developer. It should
cost less than the license for a multi-vendor tool set implementation. Having the
framework run on any Unix computer and licensing it to tool developers would
not only minimize the risk to the tool developers of encapsulating into or
integrating with a framework, but it would also sell a lot of frameworks. It would
distribute the development cost over many tool and framework customers,
which would allow the framework price to be reduced, which would attract more
developers and buyers to the framework.

134

Enterprise Integration and Management Computing Resources

To further encourage tool developers to encapsulate and eventually integrate
their tools into a framework, the framework vendor should provide tool
encapsulation and integration services to tool vendors.

6.9.10.3.2.7. Tool Decomposition

Tools that are really a collection of tools bundled as one product with various
options, like Euclid, IDEAS and All-In-One should be unbundled. Each useful
piece thereof should be separately encapsulated or integrated into the
framework. This finer degree of tool granularity would allow framework tool
buyers to choose the optimum combination of tools for their environment. They
would not have to live with bad portions of a bundled tool to have its good
portions. They would not have to buy tool sets which have tools that are
redundant with those of other tool sets (e.g., drafting, shaded display, text
editing tools). They would only need to buy the best solid modeling kernel,
shading or drafting tools, regardless of their source.

etc.

Catia

Uniraphics

Proprietary AIS
or Framework

S
ur

fa
ce

s

D
ra

fti
ng

C
S

G
/B

R

N
C

Euclid

Framework

E
uc

lid
 C

S
G

/B
R

C
V

 D
ra

fti
ng

U
ni

gr
ap

hi
cs

 N
C

C
at

ia
 S

ur
fa

ce
s

CV

et
c.

et
c.

et
c.

et
c.

Though mitigated with the implementation of Motif, the user interface is still
different for each tool. This necessitates training for each tool and retraining for
each new release of each tool. The next step toward complete integration is the
decomposition of tools into their constituent algorithms and their execution
under a single user interface.

IDMS

E
uc

lid
 C

S
G

/B
R

C
V

 D
ra

fti
ng

U
ni

gr
ap

hi
cs

 N
C

C
at

ia
 S

ur
fa

ce
s

et
c.

et
c.

et
c.

et
c.

135

Enterprise Integration and Management Computing Resources

Such a decomposition will effectively result in many more "tools". Most will
have no user interface or data management facilities to call their own. A
technology known as Hyperknowledge™ can effectively integrate all the
algorithms into what appears to a user to be a single tool with a single user
interface. The user interface is oriented toward requirements definition and
feedback to the user concerning the design, analysis and manufacturing
preparation effect of the requirements as interpolated or extrapolated by
Hyperknowledge™. This form of integration is exemplified in the Intelligent
Design and Manufacturing Synthesis (IDMS) system of OMNIGON, Inc. (P.O. Box
96970, San Diego, California 92196-9070).

6.9.11. Programming Languages

Much of what is in this section was learned from Digital Equipment Corporation (DEC).

Object-oriented programming is the method of choice. C++ is the de facto
object-oriented programming language. Other dominant programming
languages are COBOL for business applications and FORTRAN and C for
scientific and graphic applications. To minimize software maintenance costs
and maximize the reusability of code modules (objects or subroutines),
structured programming techniques can be applied to the use of any
programming language.

6.9.11.1. Graphics Programming

The Programmers' Hierarchical Interactive Graphic Standard (PHIGS) and the
extended standard for 3-D graphics (PHIGS+) are graphics programming
standards. The PHIGS standard embodies structure concepts, editing and
search capabilities. It provides structure network posting and a consistent
approach to structuring graphics elements for display, particularly attributes and
transformations. It defines uniform methods of handling output primitives, input
classes, and attributes used in transfers between applications and between
applications and devices. It includes primitives to support wire frame graphics.
It defines a fill area set primitive and an annotation text primitive to support the
requirements of 3-D graphics applications. It defines polyline, polymarker, text,
and generalized drawing output primitives. It also supports atomic output
primitive functions at the device level, such as circles, rectangles, and arcs. It
provides a model of the abstract graphical workstation.

PHIGS+ provides a transformation pipeline, handles clipping and
transformations and stores data in a defined coordinate system for perspective
and parallel views.

The PEX committee standard (PHIGS/PHIGS+Extension to the core X Window
System) will provide a common programming interface for 3-D graphics for both
Graphics User Interface functions in the X environment and for graphics
applications.

136

Enterprise Integration and Management Computing Resources

6.9.11.2. Object-Oriented Programming

Much of what is in this section was learned from Digital Equipment Corporation (DEC).

Programs traditionally work on data structures like record and array, and
operations like assignment and expression evaluation. Traditional
programming has forced the programmer to think in terms of low-level
abstractions that are close to the level of the hardware on which the program
executes. The advantage of an object-oriented view of programming (or data
management) is that it offers the programmer a higher level of abstraction from
which to work. This simplifies the job of programming.

This is the key reason why the word "object" is becoming such a buzz word.
Ten years ago it was argued whether programmers should work at the level of
abstraction supported by assembly languages (named variables and mnemonic
representations for machine instructions), or at the level of abstraction
supported by high level languages (COBOL, FORTRAN, ALGOL, PASCAL, C,
etc.). The argument was settled decisively by the fact that programs written in
high level languages took nearly one-third the time to develop as their
counterparts in assembly language. Subsystems written in high level
languages often had a life-cycle maintenance cost one-fifth that of subsystems
written in assembly language. Object-oriented programming promises to
provide a programming improvement of the same magnitude.

This 5:1 increase in productivity, and a 10:1 reduction in life-cycle support costs
results from

a high degree of modularity, enforced by the software,
the ability to inherit and refine types, letting programmers reuse modules

instead of writing from scratch and
a high level of abstraction which lets programmers work at the level of

their problems rather than the details of a tool.

Computers and programming languages have always had rudimentary notions
of object types in them. Most have built-in support for a small number of low-
level types: CHAR, INT, FLOAT. These were called "data types." They are also
"types" in the more general sense of the word. They have instances ('3' is an
instance of the type INT). They each support a well-defined set of type-specific
operations.

Object-based programming extends this notion of types and instances to
higher-level types. The programmer is no longer restricted to working with pre-
defined types. Types can be defined such that their behavior and properties
closely resemble the real-world entities they are intended to model.

Object-oriented ideas have been emerging with different terminology in three
subdisciplines of programming:

database management,
artificial intelligence and
programming languages.

137

Enterprise Integration and Management Computing Resources

In the database world, object-oriented systems are called "semantic data
models." Examples are TAXIS (Univ. of Toronto), SDM (MIT), DAPLEX (CCA)
and GEM (Servo-Logic). In the artificial intelligence world they are called
semantic nets, or knowledge representation systems. Examples are FRL (MIT),
KRL (Stanford) and SRL (CMU). In the programming language community,
support for object-based languages has begun to appear both in applicative
languages like LISP (the FLAVORS mechanism at Symbolics; GLISP at
Stanford) and Smalltalk, as well as more traditional algebraic languages (Ada,
C, Modula).

Conventional data models are not expressive enough. They provide no
integration of data and procedural information. They perform poorly for graph-
walking (pointer chasing) applications (CAD, CIM). Their transaction and
recovery mechanisms (locking and logging) have too much overhead. One
model is needed for data and programs. The object-oriented paradigm
provides that model.

The attributes of an object-oriented programming environment listed in order of
importance are methodology, language, programming environment, type library
and persistent storage (database). The most important aspects of object-
oriented programming are data abstraction and inheritance . Data abstraction
allows behavior to be separate from implementation. It supports abstract data
types. For example, shape is an abstraction of

Case 1 - circle
Case 2 - triangle
Case 3 - square

Abstraction provides a higher-level interface.

Objects are well-defined data structures that consist of fields that refer to other
objects and a set of operations that allow data to be manipulated. The object
data model contains properties and operations. Properties model the state of
an object. Operations define its behavior. Objects are self-identifying. Objects
invoke operations of other objects. An operation has two parts:

interface (message) and
implementation (method).

Processes (text scanner) and intangible concepts (window manager) can be
modeled as objects.

Types classify objects. The chief role of a type is to define the properties and
operations (behavior) of its instances. Each object is an instance of a type,
Type is a unit of modularity, not procedures.

Types are related to one another in subtype/supertype hierarchies. A subtype
"inherits" all the operations and properties defined on its supertype. Type
hierarchies are useful. For example, type person may have subtypes

employee, student, and
part-time, full-time.

138

Enterprise Integration and Management Computing Resources

Types should hide information and reduce interdependencies. A challenge is
to choose where to put behavior: in a new type or in some existing type? Some
rules follow.

Reusability - Factor-out behavior that would be useful in more than one
context.

Complexity - Provide complex operations in a separate type.
Applicability - Provide behavior in a relevant type.
Implementation knowledge - Implement an operation that needs to know

about the internals of a type in that type.

Inheritance allows data types to share definitions. To use inheritance
effectively, one should subtype for

Specialization
type: input device
subtype: mouse, tablet, keyboard;

Implementation
type: dictionary
subtype: hash table, property list and

Combination
type: teacher, student
subtype: teaching assistant.

Subtype should not be used for aggregation.

Only Trellis/Owl, C++ and Smalltalk are truly object-oriented. Object C is an
extension/hybrid of C. When selecting an object-oriented programming
language, one should look for

compile time type checking,
parameterized types,
iterators,
exception handling and
storage management.

6.9.11.2.1. Evolution of Object-Oriented Programming
Languages

Like most programming languages, object-oriented programming languages
have evolved.

LISP

TRELLIS/OWLCLUSIMULA

ALGOL PASCAL ADA

C++C

FLAVORS/CLOS

SMALL TALK

COP

139

Enterprise Integration and Management Computing Resources

6.9.11.2.1.1. C++

C++ was developed by one person at Bell Labs. It is "C with class." It is a
super-set of C. It makes concessions to C syntax, has strong typing and will
have multiple inheritance. It has no parameterized types or exception handling
or automatic storage management (no garbage management), but it has
constructors/destructors. Large public domain object libraries are under
development. Language development is controlled by one person. C++ is
precompiled into C. The precompilation is not human readable. C++
compilation results in an efficient implementation.

6.9.11.2.1.2. Object C

Object C from Stepstone is a melange of Smalltalk and C. It has a good library
and a single source (unlike C and Smalltalk).

6.9.11.2.1.3. Smalltalk-80

Smalltalk-80 from Xerox is a mature language and system. It is primarily for
experimental programming. It has an extensive library, a sophisticated
programming environment, and a unique, but simple syntax. Object-oriented
concepts permeate Smalltalk and are designed-in. Variables and slots are not
typed, they are checked-out at run-time. There are many unofficial variants of
Smalltalk. A standards committee has been formed.

6.9.11.2.1.4. Trellis/Owl

Trellis/Owl is the proprietary object-oriented programming language of DEC. It
consists of over 30,000 lines of code. It has the message passing, late binding
and inheritance of Smalltalk. It is strongly typed. It was inspired by CLU. It has
ALOGL syntax, iterators, parameterized types, exception handling, automatic
garbage collection, programming environment, call-out to any language (e.g.,
Fortran) and compiles into machine code.

Integrated Language

DEC Windows Graphics CAD (eg. Euclid) . . .

Object-Oriented
Lanugage:

Trellis & C++

Object
Resository

Programming
Environment
(eg. VAXset)

Type libraries:

New additions needed

Trellis data base
keeps track of everything

C, Modula, Ada

CLOS Trellis C++ Call Interface

Object Resository

Trellis/Owl is beginning to be accepted by development groups at DEC. One
hundred copies were distributed for "research" purposes, but recently DEC has

140

Enterprise Integration and Management Computing Resources

decided to productize Trellis/Owl. This coincides with the selection of
Objectivity as the object repository (see Object-Oriented Data Management).

Although Trellis/Owl could be used very productively independent of the
VAXtools, they are still worthwhile additions to a Trellis/Owl programming
environment.

6.9.11.2.1.5. EIFFEL

EIFFEL is like Trellis/Owl, but has a less sophisticated programming
environment.

6.9.11.2.1.6. FLAVORS and CLOS

FLAVORS and CLOS (Common LISPS) are extensions to LISP. They have
some compromises and non-uniformity. FLAVORS has several dialects. CLOS
is being standardized. It has multiple inheritance with priority scheme for
resolving inheritance conflicts. It does run-time checking.

6.9.11.2.1.7. ADA

ADA is not an object-oriented programming language. It may allow abstract
data types.

141

Enterprise Integration and Management Tool Resources

6.10. Tool Resources

As the granularity of the product definition increases, the product definition
differentiates into the major system categories of software, electrical/electronic
and structural/mechanical products. This differentiation is a consequence of
specialization and the practical need to emphasize different portions of the
process. The isolation of the various disciplines (aerodynamics, structures, fuel
systems, etc.) from one another resulted in differing vocabularies. Different
names were used to describe essentially the same activities in the process.
Slightly different ways of performing configuration management and measuring
and reporting progress evolved. Accordingly, different tools were developed
and used for common as well as dissimilar process practices. Efforts to
integrate tools concentrated in one discipline to the exclusion of the others.
However, there is a strong dependency among the software, electrical and
structural systems of a product.

The cost to design software is high relative to the cost to manufacture and
supply it. The cost to make an electronic system and test it is low relative to the
cost to analyze it with comparable confidence. The opposite is more often true
of structural/mechanical products. The cost of designing structural/mechanical
parts is low relative to the cost of their manufacture.

As a consequence, software tools tended toward requirements gathering,
prototyping and interactive graphic design. They initially ignored configuration
management needs, but later evolved the worst case requirements for
configuration management. Electrical tools tended to concentrate on two-
dimensional system design documentation (drafting) tools. As the designs
became more complex, the tools tended toward system simulation and
packaging (automated placement and routing) tools. Structural/mechanical
tools initially tended toward analysis and two-dimensional assembly
documentation. As the algorithms became available, the tools tended toward
three-dimensional and parametric system design and analysis. These tools
and their evolution are described in later sections.

Efforts to integrate the tools were naturally organized along the same lines of
demarcation. Application interface "standards", backplanes or frameworks.
were initially used to integrate Computer Aided Software Engineering (CASE)
tools. Later, they were proposed as a way to integrate all tools. Businesses that
involve a combination of many system types (software, electrical, electronic,
structural, mechanical, hydraulic, etc.) must have their tools integrated across
the disciplines.

142

Enterprise Integration and Management Tool Resources

The interaction among the various resources, including the tool resources was
depicted in the Computing Resources section with the following diagram. In this
instance, the flow of data and control is shown. Most flows are bi-directional as
indicated by the lack of any arrows.

Controller

MACHINESPeripheral nKeyboard

Operating System

FACILITIES

HUMANS

Central Processing
Unit and Related

Electronics

Controller Controller

Display
Services

Data Mgmt.
Services

File Mgmt.
Services

Network

Controller

Storage

Controller

Controller

Display

Tool Interface

Tools

If the controllers are generalized and the Human, Machine and Facility resource
categories are removed, a diagram more pertinent to tools results. In this case,
only the flow of information to human resources and the flow of control data to
machine resources is shown.

Computing Resources

Data Interface

Controller n

Tool Interface

Tools

Peripheral n

143

Enterprise Integration and Management Tool Resources

The following diagram emphasizes the tool categories (sets, product lines) that
have evolved. What appears to be a differentiation of the business process into
software, electrical and structural processes, each with its own requirements
definition and allocation, system design and validation, manufacturing and
support activities is, in reality, only a differentiation of the tools used in the
process. The tools may change as a function of the product, but the
fundamental process remains the same.

Peripheral Devices (display, keyboard, mouse...)

Data Bus

Computing Resources

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

UI

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

UI UI

Control Bus

. . .

. . .

. . .

. . .

144

Enterprise Integration and Management Tool Resources

The flow of control and data is from the user through some peripheral device (or
controller in the case of a machine tool), through a tool-specific user interface to
the computing resources and back. As described in the Computing Resources
section, a standard windowing system can be used by tool vendors to reduce
the amount of the user interface that has to be developed and maintained.
Sharing data through a similarly standard programming interface like the A Tool
Interface Standard (ATIS) will also reduce software development costs. Having
a mechanism for tool control will improve tool integration.

Peripherals

Data Bus

Computing Resources

Structural and
Mechanical
Design and
Validation

Tools

UI

Software
Design and
Validation

Tools

Electronic and
Electrical

Design and
Validation

Tools

UI UI

Control Bus

. . .

. . .

. . .

. . .

Window Environment (X-Windows, OSF/Motif

145

Enterprise Integration and Management Tool Resources

Three tools that are not common to most tool sets or framework depictions are
Process, Product Data and Resource Management tools. The Process
Manager improves the efficiency and concurrency of the use of the other tools.
The Product Data Manager provides a common context for all the tool, machine
and human resources. The Resource Manager provides a means to find
resource combinations for specific types of work. It avoids resource over- or
under-utilization and identifies resource conflicts. Each is described in more
detail later.

Peripherals

Data Bus

Computing Resources

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UIUI UI

P
ro

c
e

s
s

M
a

n
a

g
e

r

UI

Control Bus

. . .

. . .

. . .

. . .

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

Although much of this discussion has focused on software tools, the resource
management concepts are similar in other tool categories. Tool cribs allow
machine tools like drills, cutters and fixtures to be shared among various
machines. A common database or application programming interface are
similarly used to facilitate the sharing of data among software tools. Just as
data may be distributed, the tools need not be maintained in one geographic
location to achieve the goal of the tool crib. Tool availability and whereabouts
only need to be known to those who need the skills embodied in a tool.

To conduct the tasks delineated in the Task Breakdown Structure (Information
Integration section), a variety of skills are required. Since no one tool has all of
the skills needed to conduct the business process, many tools are required.
Descriptions of some of these tools follow. Most are described in terms of their
use in the business process.

6.10.1. Hand Tools

Hand tools cannot be used by a machine. Hammers, files, saws, drill motors,
"skill" saws, oxygen/acetylene welders are examples of hand tools. They each
have particular skills. They may be used by more than one human resource.

146

Enterprise Integration and Management Tool Resources

6.10.2. Machine Tools

Machine tools are those tools which can normally only be used by a machine.
Machine tools are held by the end-effector(s) of a machine. Tools are an
extension of the end-effectors of machines. Machine tools that may be clutched
by end-effectors are:

Cutter Assemblies (cutter plus extensions and adapters)
Cutters

Horizontal mill
Vertical mill
Drill
Ream

Routers
Carbon Electrodes (erosion milling)
Graspers
Welders
Riveters
Touch Sensors (measurement, assembly, disassembly, positioning)
Water Jet (cutting)
Lasers (cutting, steriolithography, measurement)
Sound generators (autoconsolidation)
Paint Dispensers

A single machine may have many end-effectors and cooperatively use many
machine tools. The end-effectors of many machines in a cell may cooperate as
well.

End-effectors are often not the only part of a machine that is capable of motion.
The table or bed on which a workpiece is secured may be capable of moving in
one or more axes (left/right, in/out, up/down, rotate around any of those axes) to
present a new part or a different face of a part to an end-effector and its tool. In
some machines, two tables alternate to present a new part to the tool(s) while
the finished part is safely removed. A new workpiece is secured on the inactive
table. Bed motion instructions must coordinate with those of related end-
effectors.

A lathe is an example of a machine in which the bed, or chuck, in this case,
does most of the work. The end-effector needs to move only in two axes
(left/right and in/out) to present its simple cutting tool to cut a workpiece held by
the rotating chuck.

In addition to the major motion devices there are coolant dispensers, chip
removal conveyers, vacuums and other devices on a machine whose actions
must be coordinated with the other devices on the machine by way of machine
instructions.

Machine instructions must also instruct a human resource to perform tasks for
the machine or ask the human resource to intervene if unanticipated
circumstances arise with which the machine instructions cannot cope.

147

Enterprise Integration and Management Tool Resources

6.10.3. Fixtures

General purpose fixtures like clamps and vices may be used on many different
machines and by human resources for many different parts. They have many
skills. Special purpose fixtures are made for a specific part during one or more
operations on it using one or more machines. They may have fewer skills, but
fewer of them are needed to perform a task that would otherwise require many
clamps and a lot of human resource time to position and secure them manually.

6.10.4. Software

Application software (software tools) are used to aid or automate portions of the
business processes. Unless there is an intervening layer of software (ATIS)
between a software tool and an operating system, the tool will only run on the
platforms and operating systems for which it was designed.

6.10.4.1. Acquisition

The cost of "competitive edge" software is high if it cannot be shared. The cost
of its maintenance is such that little, if any, is performed on "in-house" tools. As
a consequence, what was once an advanced product quickly becomes
obsolete. It is eventually replaced by a commercial software tool.

It is advisable to purchase all software tools rather than develop and maintain
them, because the cost of development and maintenance of commercial
software tools is distributed among many hundreds of customers. The
maintenance of the product is paid by way of software license agreements by
the many owners of the licenses or with a portion of the sales price. As long as
the product continues to attract customers, there will be income for the
continued improvement of the product, which should attract more customers.

Every effort must be made to locate, acquire, integrate and use adequate
commercial software tools before consideration is given to developing
proprietary software tools. If no acceptable software tool exists, then the
software tool suppliers should be pressed to divulge their plans. If a new
product is expected to meet the requirements as much as a year beyond the
expected date of release of a software tool developed by the enterprise, the
development should not be undertaken.

Only when no commercial alternative can be foreseen, and no commercial
software supplier will undertake the development of a necessary software tool,
should software be developed by an enterprise. Even then, the development
should be undertaken jointly with one or more commercial suppliers with the
understanding that the resulting tool will be marketed, sold and maintained by
the commercial supplier. Royalties or advance usage can compensate the
enterprise for its investment. If the enterprise develops software entirely on its
own, it should seek a commercial outlet for the software, so that the software will
be maintained as a viable product.

148

Enterprise Integration and Management Tool Resources

Large companies should strive to obtain site licenses for purchased software
instead of licenses that are specific to an instance of the software on a
computer.

Better yet, buy file server-based software on a concurrent-user basis. For
example, a "four-seat" license would allow anyone anywhere on a network to
use the tool until there are four concurrent users. The software restricts a fifth
user from using it until one of the earlier four users "release" the software. If
contention becomes a problem, buy more seats. Sell seats when they are in
excess.

This arrangement allows an enterprise to increase and decrease its software
tool inventory to meet its real needs at minimum cost and do it quickly. The
cost-effectiveness and convenience of this approach encourages companies to
comply with copyright restrictions, which is in the interest of the supplier. The
addition or deletion of concurrent users could be done with code supplied with
the tool, by the tool supplier on-site, or by the tool supplier remotely by modem.

Another advantage to file server based software is that it reduces the number of
computers that must be upgraded with new releases of tool software. A tool on
the computers in a network can be easily upgraded in one operation by a
human resource, which prevents tool, network and peripheral (laser printer)
disruptions due to version incompatibilities.

6.10.4.2. Development

If the enterprise chooses to develop business or product software, the most
modern and highest level (generation) of software development tools available
should be used. Fourth generation languages are being challenged by
graphical (fifth generation) languages like those provided by Odesta and
Symantec, especially for rapid prototyping purposes.

Prototyping software tools as a means to determine their requirements is
encouraged. It elicits requirements that may otherwise remain unknown until
late in the development process, when the cost to change is much higher.
Prototyping is especially useful when the expected tool users are not computer
literate. Their exercise of a prototype will help them learn what is possible.
Then they can define optimal and realistic requirements. A prototype
unambiguously represents the requirements of a proposed tool.

Computer Aided Software Engineering (CASE) tools like Software Through
Pictures (STP) are usually software tool sets that are utilized to develop other
software (instructions compiled and run on general purpose computers), or
firmware (loaded and run in an integrated circuit), according to customer
requirements. The customer requirements can be thoroughly defined using a
tool like RDD-100 from Ascent Logic. CASE tools usually include graphic
software design, code templates, logic verification aids, configuration
management and documentation tools.

149

Enterprise Integration and Management Tool Resources

The rapid demand for CASE tools spawned the development of many tools by
many small companies. None of them supported the entire software
development process. Even when laboriously used as a set of tools, many
functions were missing or redundant. Their proprietary command and data
structures prohibited their integration. Application interface "standards" were
devised to solve the integration problem. This was the genesis of frameworks,
which are described in the Computing Resources section.

6.10.4.3. Data Management

No software tool should use a proprietary data manager. Data management
related development tools should be limited to those that facilitate the use of a
standard application programming interface, like A Tool Interface Standard
(ATIS). The ATIS will provide concurrent access to one or more database
management system as described in the Computing Resources section.

6.10.4.4. Migration Aids

Software tools to help the migration of data from tools based on proprietary or
non-framework database management systems (DBMSs) to framework-based
DBMSs are recommended to ease the transition from legacy software tools to a
framework environment. Should the DBMS that initially underlies a framework
be relational, software tools to help the migration from the relational DBMS to
an object-oriented DBMS in the framework should be required of the vendor to
ease that transition.

6.10.4.5. Class Definition

Class definition software tools allow a developer to complement, create or
modify a hierarchy of objects, and complement, define or modify their methods
(behavior) and their implementation (structure of the data and fields).

6.10.4.6. Mathematical

Software tools should utilize standard mathematic function libraries. Such
functions include scalar product, vector product, matrix operations and
trigonometric functions (sine, cosine, tangent, etc.). Common geometric
functions like distance (point/point, point/line, point/surface, etc.), length (line,
curve), area, centroid, inertias and intersections (line/line) should also be used.

Having software tools use the same functions helps to assure that the same
operation performed by different tools has the same result. Such functions are
an example of the direction software tools can and should take by way of a
framework. Many of the products that may be encapsulated in a framework will
include tool sets (drafting, surface modeling, routing) that are redundant with
those of other products. Each of those tools will have redundant functions
(display wire frame model, translate, rotate, insert dimension). The tools and
their functions should eventually be decomposed and treated as mathematical
functional libraries are currently treated.

150

Enterprise Integration and Management Tool Resources

6.10.4.7. General Use

These software tools provide functions that are commonly used by everyone
involved in the business process.

6.10.4.7.1. Word Processor

Word processors like MacWrite, Microsoft Word and Word Perfect have become
indispensable for quality written communications. They reduce the cost of
changing text or managing large documents.

Word has a feature called QuickSwitch which provides a degree of automated
document configuration management. Excel spreadsheets or Superpaint,
MacPaint or MacDraw pictures, or their portions can be copied and pasted
(paste link) into Word documents with live links. Macintosh System 7.0 makes
this feature available to all Macintosh-based tools. The Compound Document
Architecture (CDA) of Digital Equipment Corporation supports live links among
all the tools that conform to the CDA, like DECview and DECwrite.

6.10.4.7.2. Presentation Graphics

Two-dimensional drawing tools like MacDraw, Canvas and Draw Perfect have
become indispensable to those who often prepare view graph or slide
presentations. Each line, arch, box or text object retains its identity so it can be
edited.

Those who need more creative latitude use two-dimensional paint programs,
like MacPaint, Fullpaint and Color MacCheese. Once pasted into the work
space, paint objects loose their identity. They must be re-identified using
rectangular or arbitrary cutting tools before they can be moved, copied or
pasted. Canvas is one exception to this norm. It retains the object identity of
pasted images.

Canvas and Superpaint offer a combination of drawing and painting
capabilities.

6.10.4.7.3. Spreadsheet

Spreadsheet tools have become very powerful, adaptable and easy to use.
Many of the software tools listed in the category of Mathematical Software tool
kit are available with a modern computer-based spreadsheet like Wing-Z™,
Microsoft Excel™ or Lotus 1-2-3™.

6.10.4.7.4. Electronic Mail

Electronic mail allows information to be disseminated to many people quickly
regardless of their geographic location. The store and foreword capabilities of
electronic mail tools avoids the problem of "telephone tag." The messages are

151

Enterprise Integration and Management Tool Resources

usually stored once on a computer or on a network of computers. All-In-One™,
Microsoft Mail™ and Oracle Mail™ from Digital Equipment Corporation,
Microsoft Inc. and Oracle Inc., respectively, are examples of electronic mail
tools. Microsoft Mail will even issue a telephone-like ring to alert the recipient of
new mail. It will also allow files of any type to be "attached" to a message.

6.10.4.7.5. Voice Mail

Voice mail is a telephone enterprise version of an answering machine. To
avoid "telephone tag," messages can be left by the caller for the recipient.
Some systems will send messages to many people on a distribution list of
telephone numbers much like electronic mail text is distributed.

Some tools like Microsoft Mail allow messages to be expressed in text, voice or
a combination of data types.

6.10.4.7.6. Desk Management

Although there are many commercial desk top management products available,
HyperCard is probably the most renowned example of a tool for managing
telephone numbers, appointments, disks, files and other information associated
with a conventional office as "cards" in "stacks" that can be sorted and browsed.
The collection of its standard stacks is equivalent to many organizer tools.

6.10.4.7.7. Project Management

Project managers and those who like to plan the use of their time will use
project management tools, like MacProject to quickly and graphically create
task dependency diagrams. More powerful project management tools like
QuickNet, Artimus and P2 are too difficult to use for a general use tool.
Quicknet may be used for product development Program task planning and
scheduling purposes. Artimus and P2 are similarly appropriate for entire
enterprises.

6.10.4.7.8. Custom Data Management and Decision
Support

There should be no custom tools unless there is not likely to be a commercial
alternative. However, the cost of developing tools with products like
HyperCard™, Helix/VMS™ or 4th Dimension™, which require no programming
experience is such that they may be used to develop a temporary tool until a
commercial alternative is available. The temporary tool may in fact be used as
a requirements prototype by a commercial developer. This approach will be
especially viable if the data management and decision support products
interface directly with the framework via ATIS.

152

Enterprise Integration and Management Tool Resources

6.10.4.7.9. Graphic Feedback

Communicating questions, problems or suggested changes to the originator of
a design in a distributed computing environment in the context of the original
design has been a problem. Analysts write reports and verbally attempt to
describe the part of a part which concerns them using text. Designers must
interpret the text and determine what part of the part to which the feedback
applies.

Until DECview 3-D™, there has been nothing equivalent to "red-lined drawings"
for three-dimensional models. With DECview 3-D™, analysts, tool designers or
the like, can display a copy of the original design, orient it for their purpose, and
superimpose notes and arrows on the model for review by the designer. By
providing the feedback in the context of the design, designers can immediately
recognize their model and can quickly orient it to view the questionable area.

6.10.4.7.10. Process Manager

A Process Manager allows human resources to define, extend in breadth or
detail, modify, review or schedule tasks as a function of their authority. Once
invoked by a user or triggered by time or some other condition (constraint met),
the Process Manager invokes those functions it can cause to be performed. It
notifies human resources to invoke the functions it cannot cause to be
performed. Some of the subtasks defined may include the transfer of a software
tool and data to the workstation to be used by the person responsible for a
scheduled subtask. If a change is approved that affects on-going work, human
resources are notified and computer programs stopped automatically
(electronic stop work order). This can be done according to phase-in criteria
(use existing inventory of parts before switching to replacement part) that will
minimize scrap while achieving the goals of the change.

Peripherals

Data Bus

Computing Resources

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UIUI UI

P
ro

c
e

s
s

M
a

n
a

g
e

r

UI

Control Bus

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

The Process Manager uses and maintains in the framework the Task
Breakdown Structure (TBS), which is described in the Information Integration
section. The TBS may be examined and changed using the graphical browser,
which is described later.

153

Enterprise Integration and Management Tool Resources

An enterprise must first define the way it will do business in terms of a set of
allowable work categories and a sequence of workpackage and task
milestones. Each product development effort (Program) must define the way it
will do business in terms of an appropriate subset of the allowable milestones
and work categories. The program milestones will likely differ according to the
customer (commercial, NASA, Navy or Air Force contract).

Any original design work will normally be delineated as a set of projects. Each
project pertains to a particular aspect of a product (e.g., safety, navigation, fuel
system). Each project may consist of one or more workpackages. Each defines
work that is pertinent to a particular part or area of the product (navigation
section, cockpit). The traditional Work Breakdown Structure (WBS) can be
derived from the TBS, which should be consistent with the work proposed.

Any change activity can be defined as new workpackages, or incorporated as
revisions or additions to existing workpackages. A significant change, like
extend range, may be defined as a separate project.

Original design-related projects and workpackages or the entire TBS of
successful Programs can be copied and modified for use by new Programs.
This will not only save a lot of work, but also promote the better practices. If
prior work is similar to proposed work, it will provide a good indication of the
cost, schedule and resource requirements of the proposed work.

For example, a Program manager (human resource) may copy the TBS of a
similar Program, modify its program description, delete and add projects. A
statement that the projects defined were for another Program and should be
modified as appropriate for the new Program can be included in the copied
project descriptions automatically.

Project managers (human resource) would modify the project definitions copied
by the Program manager, or copy or originate their own project definitions as
appropriate. When originating a project the project manager will

describe the project,
delineate the workpackages involved and
estimate the duration of each workpackage.

Project manager labor costs would be charged to that project as a project
definition task.

Similarly, cognizant engineers (human resource) assigned to a project can
copy and modify or originate workpackages. When originating a workpackage
the cognizant engineer will

describe the workpackage,
select the appropriate work category and workpackage (initiation,
definition, approval) and task (design, analyze, prepare for
manufacturing ... produce) milestones to the extent reasonable,
delineate the new, replacement and replaced items involved,
identify the organizational entities (departments) responsible for each
task, and

154

Enterprise Integration and Management Tool Resources

estimate the duration of each task.
The Process Manager will automatically specify the file name for any new
manifestation, derivative or other deliverable as described in the Information
Integration section. Upon completion, the cognizant engineer will update the
status of the workpackage. The status change will trigger electronic mail and
perhaps voice mail messages to all the departments Cognizant engineer labor
costs would be charged to that workpackage as a workpackage definition task.

By default the managers of the departments are the responsible engineers
(human resource) for workpackage tasks until they delegate the responsibility to
someone in their department. Each responsible engineer will with the aid of
individual engineers

refine the task description,
delineate the sequential and parallel subtasks necessary to complete the
task,
describe each subtask,
identify the deliverables of the lowest-level subtasks,
select the manifestations appropriate for each deliverable,
select the appropriate derivatives of the manifestations,
select the appropriate validations.
select skills and proficiencies needed to conduct each subtask,
estimate the time required of each skill to conduct the subtask.

When finished, the responsible engineer will update the status of the task. This
will trigger electronic mail and perhaps voice mail messages to the cognizant
engineer. The cognizant engineer should then begin a dialogue about the task
definition and duration. Responsible engineer labor costs would be charged to
that task as a task definition task.

The responsible and cognizant engineers and project managers may simulate
the effect of their respective tasks, workpackages and projects on the enterprise
and identify resource conflicts and slack time or unrealistic schedules by
supplying a start or end date. The Process Manager will consult the Resource
Manager (described later) for resources that have the specified skills and
proficiencies and are available to conduct the defined subtasks during the
period indicated.

If the cumulative time required of a single skill exceeds the subtask duration
estimated by the responsible engineer the cumulative time required by a
workpackage or exceeds the workpackage duration estimated by the project
manager, the Process Manager issues a warning accordingly. If the cumulative
time required of a single skill is less than the subtask duration estimated by the
responsible engineer, the skill is assumed to be required "part time." The
Process Manager will alert the responsible engineer to the possibility of
condensing a subtask. Similarly, if the cumulative time required by a task is
less than the task duration estimated by the cognizant engineer, then the
cognizant engineer is alerted to the possibility of condensing a task.

The responsible and cognizant engineers will confer to resolve any problems
they find with the workpackage definition. Once satisfied, each person involved

155

Enterprise Integration and Management Tool Resources

with the workpackage will approve the workpackage definition. Finally the
cognizant engineer will approve the workpackage or submit it to some other
authority (project manager) for approval.

Once approved, a workpackage may be invoked according to the project, or if
no project, according to the Program schedule. At that instant, the Process
Manager confers with the Resource Manager to bind resources to each subtask.
Resource conflicts are resolved at the appropriate level of management
(responsible engineers, cognizant engineers, project managers or Program
managers).

Account numbers appropriate for the work may appear in the workpackage
description at the workpackage, task and subtask levels. The related human
resources are notified of pending work. They can contest the reasonableness
of the schedule and intent of their subtask, and renegotiate the subtask with the
responsible engineer. Individual engineers may also create a subtask and
associate it with a task. The responsible and cognizant engineers are notified
accordingly.

As the work commences, any stop or lift stop orders deduced by the Process
Manager from the workpackage description will be executed by the Process
Manager. The product Function, system and assembly breakdowns may be
extended by the individuals assigned to subtasks which impact the Breakdown
Structures. Additional manifestations and derivatives may be added to the
workpackage definitions. Other aspects of the workpackage can readily be
revised as more is learned. As the individual engineers and computer
programs complete their subtasks, the computer dates will be posted as actual
completion dates. When all of the subtasks of a task are completed, the task is
complete, and so forth until the workpackage, project and program are
complete.

Although it will be tedious to prepare the first workpackages, it will eventually
only involve changes to copies of old workpackages that involved similar work.
The better workpackages to copy may be found by way of the similarity of the
attributes of the deliverables involved in the work. Even the first workpackages
will be developed and a work definition and schedule consensus and resource
conflicts will be resolved far more quickly than is currently possible, because
work definition development, reviews and approvals will be performed
interactively.

The ability to define work to the level of an individual resource, allows the
activity of all resources (human, computer and machine) to be interleaved.
Designers, analysts and analytical tools can be coordinated. Machine
operators and machines can be coordinated as pairs of resources and as
members of manufacturing cells. Manufacturing cells can be similarly
coordinated.

The context of the process is maintained in the Task Breakdown Structure by
the Process Manager. The Function, System and Assembly Breakdown

156

Enterprise Integration and Management Tool Resources

Structures of the product are maintained by the Product Manager (described
below). All of the deliverables (manifestations, derivatives) that may be affected
by a change (parts, specifications, requirements, analyses, tests, kits) can be
instantly assessed and displayed by the Process Manager. The investigative
part of impact analysis is rendered essentially automatic. Those developing the
workpackage for a change need only select from the displayed lists those items
that should, in fact, be included in the change.

Accountability (audit trail) is provided by the Process Manager. The Process
Manager may utilize the Product Data Manager to determine when deliverables
are connected (SBS) to or spatially near (ABS) each other. Then the Process
Manager can notify the appropriate resources that the work they are performing
may affect or be affected by the work of others.

Resources typically do not work at the same task day after day. A design
engineer may change a current design version, develop a new version, or
analyze a design all in the same day and within the scope of the same project.
The Process Manager makes context changes minimally disruptive. A human
resource can stop working on one task and start working on another without
losing their place, even among different projects or Programs.

The Process Manager does all of this with no data redundancy, unless it is
manifested by more than one tool.

6.10.4.7.10.18. Process Manager Scenario

Upon Login at workstation, a user will either be in command mode and invoke
the Process Manager front-end on the workstation, or the Process Manager
front-end will be invoked automatically when the workstation is empowered.
The Process Manager front-end will switch the user directly to the Process
Manager on a file server. Upon the selection of a Process Manager icon, an
integrated software tool or an encapsulation script will be executed. If the tool is
not integrated, the encapsulation gets the data necessary for the task, reformats
it as necessary, transmits it to the workstation, and goes into a wait state. At the
workstation, the software executes or an encapsulation script invokes the tool
and opens the files that were received. The tool will be active until terminated
by the user. Any "saves" of shared data (deliverable) from an encapsulated tool
are intercepted by the encapsulation, reformatted and saved in an appropriate
permanent storage facility. Any "saves" of data that will not be shared are left as
work files on the workstation to be managed by the software tool as usual.
Upon termination the user is asked for an estimate of the degree of completion
of the deliverable (maturity) or its likelihood of change. When the tool is
terminated by the user, the reverse occurs.

The intimate involvement of the Process Manager in the process allows actual
process activity to be correlated with scheduled events at a subtask level.
Process activity can be cumulated up the Task Breakdown Structure to
whatever level is of interest for an accurate assessment of progress or cost. It is
done in a manner that does not inhibit the freedom of the user to conduct work.

157

Enterprise Integration and Management Tool Resources

It avoids the need for most users to learn a separate project management tool
(described above) and report their progress to it.

It is likely that each function or cell will have its own Local Area Network and
computing platforms optimized for that function or cell. Hence, it may be
reasonable to distribute the parts of the TBS (workpackages, tasks and
subtasks) that pertain to the function or cell to a file server on its LAN. The
higher levels of the Program schedule would reside on the LAN of the program
management team. If views of the Program schedule require more detail, the
Process Manager would seek the latest data through the network from the
contributing functions.

This approach has several benefits. It gives the process functions some local
autonomy, which allows them to continue to coordinate their internal work
regardless of what might happen to the larger network. It improves the overall
performance of the network, because the data is physically located nearest its
use. It eliminates the need for a Global Access Facility or the like to aggregate
data from the Process or Product Manager of each Program for bulk purchases.
The top level Process and Product Managers can also assess the net impact of
the various Program schedules on one or more manufacturing functions. Each
cell will have all of the information it needs to determine whether it should bid
for more work.

6.10.4.7.11. Work Broker

Because of the difficulty of finding suitable suppliers or subcontractors, many
enterprises have chosen to limit their selection to a few suppliers and
subcontractors and establish a relationship with them. This relationship may
range from the name of the supplier or subcontractor on an approved list of
suppliers and subcontractors to having blanket contracts and direct access to
company data.

While this approach may ease the development of contracts and improve the
flow of information and the timeliness of part delivery, it limits competition and
may thereby increase part cost. Subcontractors perceive it as enslavement. An
alternative is to utilize a work brokerage much like temporary services are used.

In this case, the approval of a workpackage triggers the Program Manager to
send requests for interest messages, according to the work described in
approved workpackages to one or more international work brokerage systems
(e.g., GEISCO). The work may involve one or more functions of the process
(define requirements, design, validate, handle material, fabricate, inspect,
assemble, test).

The request for interest messages would include the delivery dates as extracted
from the Process Manager image of the schedule of the Program. Any
necessary contract boiler plate text would be automatically forwarded with the
request for interest message. If the respondent is not known to the Resource
Manager as an approved supplier, the Process Manager answers with a

158

Enterprise Integration and Management Tool Resources

message that tells the respondent how to become an approved supplier.
Otherwise, the Process Manager queries the Product Manager for all the
product definition data necessary for the respondent to complete the task or
subtask, and sends a request for bid message containing that data to the
approved respondents.

Prime contractor engineering and manufacturing functions and subcontractors
periodically query the work brokerage. They compare their capabilities profile
and work load with the task or subtask descriptions. Those capable of
performing the work respond with an affirmative message. The respondent may
not, in fact, be capable of performing the work immediately, but may invest in
more capability to be able to perform the work in time to meet the delivery
schedule.

The respondents compare their capabilities profile with the product definition
data. Those capable of performing the work respond with a bid message that
includes the cost of the work and the time to complete it.

The Process Manager adjusts (penalizes) the cost of each bid according to any
schedule variance and past performance data (quality, cost and schedule
compliance). Based on the relative adjusted costs, the Process Manager
selects one or more winners from among the respondents. It then sends
consolation messages to the losers and work authorization messages to the
winner(s).

If there are too few respondents within a specified time, the Process Manager so
notifies the cognizant engineer of the workpackage, who must then initiate a
change to the workpackage to relax the associated requirements or the
schedule.

When a winning respondent delivers according to its subtask and the
corresponding receiving subtask completes, the Process Manager triggers the
finance system to make an electronic funds transfer to the account of the
respondent for the services rendered, according to the amount defined in the
subtask.

The product definition data provided will vary as a function of the task or
subtask. For example, the product definition data may be

the product requirements text for a design subtask,
a design model for an analysis or pre-manufacturing subtask,
a design model and a process plan for a manufacturing subtask,
a derivative of the design model for an analysis subtask or
a numerical control program that executes the process plan in the context of

the model for a manufacturing subtask, or
the derived machine control data that resulted from post-processing the

numerical control program for a manufacturing subtask on a specific
machine.

159

Enterprise Integration and Management Tool Resources

6.10.4.7.12. Product Data Manager

The Product Data Manager maintains the Function, System and Assembly
Breakdown Structures, the digital deliverables defined with the Process
Manager, the whereabouts of all deliverables, their derivation (source
manifestation or derivative and the tool used) and their attributes. It provides for
the change control and configuration management of the Breakdown
Structures, deliverables and tools as described in the Information Integration
section.

Peripherals

Data Bus

Computing Resources

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UIUI UI

P
ro

c
e

s
s

M
a

n
a

g
e

r

UI

Control Bus

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

By way of the Product Data Manager, the resources (human and software tools)
relate and reconcile interdependent and often conflicting product performance,
reliability, producibility and maintainability objectives. A continuous and
complete definition of the evolving product from conception through production
is provided by way of the deliverables created by the resources and managed
by the Product Data Manager. Traceability from requirements through design,
analysis and test, and the design decisions that resulted from trade studies are
maintained throughout the life of a product by way of the Product Data Manager.
This eliminates the duplication of effort that resulted from treating the product
development phases as separate processes. The Product Data Manager
permits the retrieval and use of the proper version of product data in the many
ways alluded to in the Information Integration section. It does so without data
redundancy, unless its functions are performed by multiple tools.

6.10.4.7.12.1. Change Control

The relationship between derived deliverables (copied and modified), the
models from which they were derived, and the tool(s) used to create the
derivation, can be established automatically. This automatic linkage applies to
derivatives of derivatives, ad infinitum. A change to a feature of a derivative that
is dependent on some feature of the deliverable from which it was derived
(source) without a change to the corresponding source feature must be either
not permitted or automatically flagged as a potential discontinuity in the product
definition. If consistent business rules cannot be established and enforced for
the scope of a change throughout the product structure, including features and

160

Enterprise Integration and Management Tool Resources

attributes, then the scope of a change cannot be automatically determined. It
must be defined by a human resource.

When the status of a model, derivative, reference document or any other
deliverable known to the Product Data Manager reaches a sufficient level of
completeness to warrant its use for rate production, it must be bonded such that
it can never be changed. Its official name (e.g., part number) cannot be re-used.
It can only be copied under a new name. Changes can only be made to the
copy. The name of the deliverable bonded will persist in the data structure
indefinitely, or until there is effectively no use for that deliverable. For example,
when all the deliverables related to a model, like the NC program and finite
element model derived from a solid model of a part, cease to exist, there is no
dependency on the model. Then it too can be purged. The longevity of some
products like the DC-3 may require that these deliverables and their
relationships be maintained for more than 50 years. This does not imply that
the entire model or any other deliverable has to be available on-line. Only the
name and location (archive) of the deliverable need be maintained on-line.

The knowledge of what user created or modified a deliverable, what user
changed the status of a deliverable and when those actions were performed
must be maintained for accountability purposes. Many status changes are
really "approvals". There can be multiple sequential and parallel approvals.

6.10.4.7.12.2. Configuration Management

A configuration management tool is typically built on top of or integrated with a
change control tool. The configuration management tool must support the
association of versions of deliverables with specific events during the life of
specific Articles of a product. An Article is uniquely identified with a number
(serial, tail, hull or chassis). A product is uniquely identified with a model, End
Item or configuration item number. The Vehicle Identification Number (VIN) of
an automobile for example, is the concatenation of the model and chassis
number. It uniquely identifies an automobile.

While there may be many versions of deliverables, only one version of the
design is used in an Article of a product at one time. That time is the period
between events. Events may involve a change to the configuration (replace
navigation section) or the addition, condition or position of a part (fill with fuel) of
an instance (Article) of a product or of the entire product (shipped to another
facility for the addition of pyrotechnics).

If another version of a system is used on subsequent Articles of a product, and
the new version requires a different part or a different version of a part whose
form, fit (ABS) or function (SBS) differs from that of the old part, then the unique
identifier of the new part must change. This indicates that it is not
interchangeable with the old part (see Information Integration section for part
identification description). If the new part affects the form or fit of its assembly or
function of its system, then the part number of the assembly and/or system must
change as well. The part number change must percolate up the assembly and

161

Enterprise Integration and Management Tool Resources

System Breakdown Structures until the assemblies and systems are, in fact,
interchangeable. Thenceforth, the part numbers may remain unchanged. The
various used and unused versions remain intact as part of the product structure
until they are discarded by their originator or a designate.

One or more product Articles may be retrofitted with new versions of parts.
Changes introduced during the production of the product are not made to all of
the Articles of a product. Some Articles may have already been produced,
delivered or destroyed. Sometimes it is not necessary to introduce a new part
until all the old parts have been used. The effectivity of the change must be
specified by Event and Article for each product. With the relationships managed
by the Product Data Manager, parts that are discovered to be prone to failure or
are otherwise bad can be readily identified.

The version histories of all the Breakdown Structures must be maintained.
Configuration control must be applied at every level in the Breakdown
Structures. Each component, system, assembly, function and task must have a
version number associated with it as an attribute. If a deliverable or any of its
attributes change, its version number must correspondingly change. A part
must inherit the largest version number (or newest date) of the features which
comprise it. A system or assembly must inherit the largest version number of
the components of which they are comprised. A product must inherit the largest
version number of the systems or assemblies of which it is comprised.

This version number inheritance technique allows computer programs as well
as humans to determine that a change has occurred (version number is larger
than the one previously known to an individual or tool). It indicates what has
changed, regardless of the level in the hierarchy interrogated.

The version number does not necessarily correlate with the computer file
versions that are used to identify the versions of files on a computer. It should
be a deliverable attribute that is internal to the Product Data Manager. The
Product Data Manager should shield the user with a more friendly and useful
interface to version information. Most users are not interested in version
numbers, Event numbers or Article numbers per se. They want to see the latest
or previous deliverable, or what deliverable is used for a certain circumstance.
The users should be able to ask for versions according to such criteria. The
Product Data Manager should make the inferences necessary to provide the
appropriate version of the requested deliverable.

The ability to have and track versions allows a greater degree of concurrency
than what might otherwise be possible. One designer could be working on one
version of a deliverable while another copies it and proceeds to modify it as a
different deliverable or another version of the same deliverable.

Version number inheritance and the fact that version numbers can be used
throughout the life of a product will cause version numbers to become large,
especially at the assembly or product levels. An alternative is to use the
computer date and time as the version number instead of an integer number.

162

Enterprise Integration and Management Tool Resources

Nearly all platforms use date and time to help their users maintain their files.
Some make date and time functions available to software tools as well. This
approach would ease the implementation of a version number technique, were
it not for the fact that not all platforms provide a date and time comparison
function. An integer version number is far easier and faster for tools to compare
than a date and time version number. Although each platform will not save files
with the same date and time, a network of platforms could cause problems with
this approach unless their clocks are synchronized or they use a network clock.

The effectivity of the systems, components, features and assemblies can be
expressed by End Item (product), Article (serial, hull or tail number) and Event
(manufacture, test, refurbish, etc.). A specific version of a product is effective for
a specific Event in the life of one or more Articles of an End Item as are the
corresponding versions of all the assemblies and their components.

The effectivity of a specific item may be determined by following its version
parentage (items with the same version number) up the product hierarchy to the
product level where the applicable Event and Article can be found. If the
version parent path leads to more than one Event and/or Article, then the item is
effective on more than one Event and/or Article. For efficiency reasons, it may
be necessary to store effectivity data at intermediate levels in the product
structure. Some product, assembly, part or feature versions may never be
effective as real products, assemblies, parts or features. Alternate parts should
only be associated with their next assembly by way of a preferred part
designation.

Configuration management allows people and processes to hold, track,
manipulate and communicate all of the relevant information about a specific
design. It provides an environment where data about design iterations can be
shared. It provides the means of establishing the proper data context for work.
Multiple configurations can exist to capture the state of a system at different
points in time or to capture variants of the system. Product lines, as well as
products, can have configurations.

6.10.4.7.13. Graphical Browser

A graphical browser is not explicitly shown on a diagram, because it is
pervasive. It provides the capability to graphically traverse and penetrate the
Process (TBS) and product Breakdown Structures (FBS, SBS and ABS). A
graphical browser will enable users to navigate intuitively to information of
interest via these Breakdown Structures. It will allow authorized users to edit
the Breakdown Structures, including the creation, deletion, extension and
decomposition of a breakdown structure. It will allow breakdown structure
nodes to be linked. It will allow all or portions of one or more Breakdown
Structures to be displayed in a single window at any level is desired. It will
provide the capability to retrieve, display and store objects associated with a
selected Breakdown Structure node.

163

Enterprise Integration and Management Tool Resources

6.10.4.7.14. Resource Manager

The Resource Manager manages the inventory of resources and the skills of
those resources. The inventory may be limited to the resources of an enterprise
or extend to include those of its subcontractors. As new computers, tools,
people, machines and facilities are acquired by the enterprise, their unique
identity, physical location, skill set and proficiency must be made known to the
Resource Manager.

Peripherals

Data Bus

Computing Resources

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UIUI UI

P
ro

c
e

s
s

M
a

n
a

g
e

r

UI

Control Bus

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

Directly or by way of the Process Manager, the Resource Manager makes
known to resource consumers what skills are available to develop or manage
the development of a deliverable as defined in the Task Breakdown Structure.
When a task is scheduled, the Resource Manager lists what resources with the
needed skills and proficiencies are available when they are needed. If more
than one task requires a skill that can only be provided by one resource, then a
resource conflict exists. The Resource Manager notifies those requiring the skill
accordingly. They must resolve the conflict by changing schedules, proficiency
or skill requirements, or by using a set of resources whose collective skills are
equivalent to that of the originally desired resource.

6.10.4.8. Special Purpose

These are the many commercially available software tools or the functional
requirements for those that are needed. Although only software,
electronic/electrical and structural/mechanical systems are discussed at any
length in this section, this is not meant to imply that they are the only systems
that merit discussion. These three domains have unique manufacturing
processes. The functions related to their design, validation and manufacturing
process are representative of those of the multitude of other systems (hydraulic,
pneumatic, pyrotechnic, optical, thermodynamic, aerodynamic, etc.). To
describe each would be largely redundant.

Tools that apply to all domains are described first. The term validation as used
in the description of tools in each domain includes analysis and test.

164

Enterprise Integration and Management Tool Resources

6.10.4.8.1. Requirements Definition/Allocation

RDD-100 from Ascent Logic was originally intended to be a software
requirements definition and management tool. It is useful for the definition,
allocation and maintenance of electrical, structural, mechanical and other
system requirements. It is an appropriate requirements definition and allocation
tool for all domains and system types.

6.10.4.8.2. Materials Selection

Many commercially accessible databases are available for a variety of
materials. Unfortunately, they are not integrated. Metallics, ceramics and
various plastics databases must be searched to discover all the material options
for a particular design requirement before the optimum material can be
selected. Most do not include acquisition costs, let alone the costs associated
with storing or fabricating the material. Some materials, like thermoplastic
composites, require expensive storage conditions to retard degradation.

Many materials suppliers provide databases of materials information. Some
provide expert tools. They ask questions, and based on the answers, guide the
user to an appropriate adhesive for example. Naturally, they tend to guide the
user to the selection of a material available from the supplier.

Some industry associations provide less parochial databases, but they often
are masses of material property data. There is no intelligent human interface to
help the user to quickly reduce the number of materials choices. Designers
cannot really be expected to sift through a maze of strength, creep and other
charts that vary according to environmental conditions, read all the caveats to
identify a few candidate materials from among 40,000 metals and 20,000
plastics, and then research and compare acquisition, handling, storage and
fabrication costs and availability in order to select the optimum material. Help is
needed.

Some of the factors to be considered when selecting a material are
paraphrased from a table in Materials and the designer by E. H. Cornish:
FACTOR PARAMETERS
Aesthetic Color possibilities

Optical clarity
Surface finish possibilities
Freedom to shape in smooth curves
Lightness or heaviness
Surface properties

Safety Aspects Toxicity
Flammability and possibility of smoke emission
Avoidance of sharp points and edges
Shielding of electrical parts

Environmental Effect of temperature on properties
Degradation due to thermic and electromagnetic radiation
Weathering
Moisture permeability
Resistance to chemical attack from acids, alkalies, solvents

165

Enterprise Integration and Management Tool Resources

Resistance to solvent stress cracking
Influence of active environments (vibration, thermal expansion) on fatigue
Fatigue effect
Ductile/brittle transitions
Influence of humidity on creep and electrical properties
Resistance to biological attack

Mechanical Tensile modulous under static and dynamic conditions
Creep and creep rupture at various temperatures and stress levels
Tensile strength
Stress relaxation at various temperatures and strain levels
Dynamic stiffness at various temperatures, frequencies and stress levels
Resistance to wear
Compressive strength
Tear resistance
Hardness
Impact strength at various temperatures
Notch sensitivity
Effect of surface finish
Friction properties
Dynamic fatigue at various temperatures and stress levels

Processing Stiffness
Strength
Forming options (bend, beat, explosive, inject)
Material removal options (cut, grind, erode)
Assembly options (fasteners, adhesives, compression bonding)

Thermal Shrinkage from the mold
Thermal expansion
Specific heat
Dimensional stability
Upper and lower temperature limits in service
Heat conductivity
Softening temperature

Acoustic Vibration absorption
Damping capacity

Electrical Electrical strength (ac and dc)
Tracking resistance (ac and dc)
Volume and surface resistivity
Dielectric constant at a range of frequencies
Loss tangent at a range of frequencies
Conductivity
Arc resistance

Magnetic Susceptibility
Coercively
Permanence

Consequently, the optimum material is seldom selected.

The aforementioned services are offered for free or at cost, so there is little room
for complaint. Commercial services can offer the better of both: industry-wide
data and good user interfaces.

The cost of maintaining this information for a specific enterprise in a specific
format is prohibitive. Commercial services can reduce the cost by spreading it
among many customers.

166

Enterprise Integration and Management Tool Resources

6.10.4.8.3. Part Selection

Bolts are representative of a family of parts, which could be maintained in a
standard parts library. Defining every bolt used in a product as a solid model
would be expensive. The shaft length, shaft diameter and thread pitch feature
attributes are the variables among a class of bolts. The head diameter and
height and driver geometry are functions of the shaft diameter. Bolt length is
limited by bold diameter. All of these attributes can be defined parametrically.
From this information, specific instances of bolts can be automatically derived.
Most fasteners and other often used parts (tube and pipe fittings) and
assemblies (connectors, valves, switches) can be economically managed in this
manner.

Enterprises cannot afford to maintain an accurate database of parts.
Consequently, several part database suppliers are vying for prominence as the
parts broker. Manufacturers cannot afford to supply the parts libraries of every
major customer with current information, especially when each demands that it
be provided in a different format. Consequently, many are supplying part
number, attribute, properties, cost and availability information to parts brokers.
Customers then subscribe to the database of the broker to get the latest parts
information.

Since many manufacturers use electrical and structural/mechanical design
tools to develop their products, their models can also be up-loaded to the parts
broker database for direct use by those designing new products. No longer do
the designers have to recreate the part model. Unfortunately, the three-
dimensional models of the manufacturers are being converted to two-
dimensional images or CAD models (IGES) for the parts broker systems. The
parts brokers have been encouraged to use solid models as the basis of future
versions of their products. All the other model types can be derived from a solid
model as appropriate for each customer.

The parts brokers provide search tools which facilitate the selection of parts
according to their part number or any combination of attributes (material,
strength, etc.). The names (numbers) of specifications and military standards
can be part attributes as well. Hence, part attributes can also be used to find all
the parts that satisfy specified requirements as well as meet physical criteria.

167

Enterprise Integration and Management Tool Resources

Part supplier, number and attributes can also be used as filter criteria to
eliminate from consideration those parts that have been shown to be unreliable
or prone to failure. The filter criteria is also a function of the environment for
which the product is intended. The more part attributes specified in the query,
the smaller will be the set of parts selected for further consideration.

Each
commercial

supplier

Commercial
DBMS

Product
Filter

Part attributes
Part Model

Supplier No.
Part number

Engineering

Part attributes
Part Model

Part number

Cost Cost

Customer
Filter

Physical part

Manufacturing

P
D
M

Purchasing

+
instructions

Designers need only specify a few attributes and their values for a broad part
class (fastener) to have all the allowable parts displayed. Not only can their
models and range of allowable physical characteristics be displayed, but also
all the standards with which they are compliant and any caveats in their use can
be displayed. Designers would then select the most desirable standard part,
supply the values for its additional physical attributes, and have the
corresponding geometry generated for placement in a systems or assembly
design.

Sometimes a part with parameters in between those of "off-the-self" parts may
be considered worth the price of custom manufacturing. Parametrically defined
parts allow the part attributes and physical characteristics of imaginary parts to
be inferred from the part attributes of known parts. If a designer is looking for a
part and finds that none of those defined thus far are suitable, the designer can
disable the software function that restricts selections to standards, specify the
parameters of concern, and let the system interpolate a suitable part
accordingly. The attributes may be interpolated as a function of the shape of the
part or vice versa. The imaginary part may then be inserted in a system design
and its effect on the system can be compared with the effect of standard parts to
determine if a custom part is in fact worthwhile.

168

Enterprise Integration and Management Tool Resources

6.10.4.8.4. Software Design, Validation and Manufacturing
Tools

These are largely what is known as Computer Aided Software Engineering
(CASE) tools. Software Through Pictures is a popular software design and
documentation tool.

Peripherals

Data Bus

Computing Resources

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UIUI UI

P
ro

c
e

s
s

M
a

n
a

g
e

r

UI

Control Bus

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

There are no software analytical tools that compare with the electrical or
mechanical analytical tools. Currently, software validation largely consists of
compilation, run, debug and modify iterations. This is equivalent to a
manufacture, use and re-manufacture cyclic process. Design and
manufacturing, rapidly done (rapid prototyping) is the best method currently
available for the development and testing of unambiguous requirements and
product alternatives.

Software fabrication is the compilation of the software. Software assembly is
the linking of the software modules into object code. Shipping is the copying
and distribution of object code. Delivery is the installation of the compiled and
linked software (object code) on the memory of a particular computer.

The true behavior of software cannot be simulated separate from its operational
environment: electronic circuits and the electrical systems that interconnect
them. As products become more complex, it will become essential that
electronic/electrical hardware simulations be stimulated by simulations of the
software that is to run on the hardware. Else subtle anomalous behavior will not
be discovered before the cost to eliminate it becomes many multiples of the cost
to fix the problem before hardware is built.

6.10.4.8.5. Electrical and Electronic Design, Validation and
Manufacturing Tools

These are the tools used for integrated and printed circuit design, simulation,
analysis, layout (detail design) and arrangement and routing (packaging).
Mentor Graphics and Daisy are commercial examples of tools for electrical and
electronic design and validation. Although a full complement of analog and
digital simulation tools are available, the construction and testing of prototype

169

Enterprise Integration and Management Tool Resources

circuit boards is still a common practice because the manufacturing process is
relatively inexpensive.

Peripherals

Data Bus

Computing Resources

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UIUI UI

P
ro

c
e

s
s

M
a

n
a

g
e

r

UI

Control Bus

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

The manufacture of electrical systems largely involves the fabrication of circuit
boards and discrete components. Conductor material (copper) is etched from
circuit boards or layers of semiconductor are etched to achieve the desired
connectivity among discrete components. The fabrication of discrete
components involves the assembly of structural, thermal and electrical materials
or the deposition of impurities in semi-conductors to induce the desired effect.
These components are then packaged and assembled on the circuit board.
Testing is usually imposed at each step.

A result of virtually every new electronics design is the need for nonstandard
fixtures or "special test equipment" to verify that the design meets the
requirements. Hence, an electronic design should include interface, stimulus
and response information that may be used by test equipment designers.

Where once the input stimulus for electronic circuits was exclusively switches
activated and deactivated by people or mechanical systems, now software
plays a predominant role. Hence, the need to have software and electrical
simulations interact. Control is where the software and electronic domains
interact.

Although software occupies no space, the medium that maintains the digital
patterns that represent software (ROM, disk, bubble memory, tape), does
occupy space. Space is where the electronic/electrical and
structural/mechanical domains interact. Given a printed circuit board profile and
the placement of components on the board in two dimensions and the thickness
of the board and the heights of the components from a component library, a
solid modeling tool can be used to extrude the components and board into a full
three-dimensional solid model of the assembly. Wire harnesses can be
similarly simulated by tubes. The arrangement of the electronic/electrical
system among the other system types can then be simulated. The model will
also be useful for assembly and maintenance simulations.

170

Enterprise Integration and Management Tool Resources

6.10.4.8.6. Structural and Mechanical Design, Validation
and Manufacturing Tools

These are the tools used to create and validate two- and three-dimensional
System, component and assembly geometry and annotate it with text.

Peripherals

Data Bus

Computing Resources

P
ro

d
u

c
t

D
a

ta
M

a
n

a
g

e
r

R
e

s
o

u
rc

e
M

a
n

a
g

e
r

UI UI UIUI UI

P
ro

c
e

s
s

M
a

n
a

g
e

r

UI

Control Bus

Structural and
Mechanical

Design,
Validation &
Mfg. Tools

Software
Design,

Validation &
Mfg. Tools

Electronic and
Electrical
Design,

Validation &
Mfg. Tools

Here again, the behavior of one system cannot be accurately predicted without
considering its interaction with other systems. The external loads of air vehicles
are caused in part by the aerodynamic and flight control systems. The external
loads of water and land vehicles are similarly caused. Mechanical systems
(suspension system, actuators) affect the structure that must resist it. Heat
generated by other systems can distort and weaken structure. Vibration
generated by other systems can fatigue structure. Structural distortions can
alter the behavior of mechanical, aerodynamic, fluid dynamic, optical and
acoustical systems. Consequently, comprehensive system simulations should
be at the level of the entire product. Cumulating them from system-specific or
assembly simulations can be misleading.

6.10.4.8.6.1. Master Dimensions (Lofting) Tool

The external and internal wetted surfaces of a product are often the first to be
defined, especially if the product moves or is otherwise subject to fluid dynamic
constraints. These surfaces constrain the structural system. The structural
system constrains all the other systems and the arrangement of their
components. The size of the product may vary parametrically, but its
proportions will likely have to remain unchanged if the aerodynamic or
hydrodynamic characteristics of the product are to meet its requirements.

Master dimension systems use some of the most sophisticated surface
definition algorithms available to describe explicitly the exposed surfaces of a
product. They include algorithms for computing variable off-set surfaces to
provide constraints for structural designers. Non-dimensional constraining
geometry (lines plotted to scale in the view plane of the drawing) is generated
for the designers and draftspersons who still use manual techniques (drafting
tables).

171

Enterprise Integration and Management Tool Resources

Some of the master dimension systems evolved into wireframe and surface
design systems that designers could use. Some now include solid modeling
capabilities (CATIA). Many solid modeling systems have evolved to include
sophisticated data management functions (Euclid). Master dimension systems
that were based on mainframe computers can run on workstations. The tool
needs of the loftsperson and structural/mechanical designer can now be
satisfied by one tool.

With the addition of fuzzy surfaces, this combination of tools will allow the
design to proceed concurrently from the outside in (gradual dedication of
volume to function) and from the inside out (incorporation of off-the-shelf parts
into the design).

6.10.4.8.6.2. Parametric Design Tool

A solid a modeler should ideally allow model geometry to be defined such that
variations in one geometric variable could be immediately reflected in other
geometric variables within a part, like a spreadsheet, and among parts within an
assembly, like linked spreadsheets. Unfortunately, making solid model
geometry parametric can strain computing capacity. Some viable design
products have arisen from parametric design tools with limited geometric
definition capability. These products were targeted at those involved in
preliminary design, where the product definition is sufficiently abstract to be
represented by a parametric design tool. As the product design becomes more
refined, however, the limited capabilities of the parametric design tools soon
become apparent. Only products with few systems and components can be
accommodated.

Solid modeling tools can be as inappropriate for preliminary and conceptual
designers as parametric design tools are inappropriate for detail designers. A
preliminary designer may be willing to specify that a bolt will be used, but not
willing to specify its type or diameter, let alone its thread size. A conceptual
designer may not be willing to commit to the use of any specific fastener,
because an adhesive may still be a viable option. If the designers involved
during the detail phase are to capitalize on earlier work, the interface between
parametric and solid modeling tools must be seamless or solid modeling tools
must incorporate parametric design capabilities. Feature, part and assembly
attributes specified in the earlier phases must be useful to later phases. Their
abstractions should provide a useful basis for more detailed manifestations.

Derived geometry must retain its parametric links to the manifestation or
derivative from which it was derived unless they are explicitly broken. Attributes
associated with the geometry (thermal emission, volume) should change
according to geometric changes or other influences.

As algorithm efficiencies and computing capacity improve and the cost of
computing resources declines, parametric design will become an integral part
of solid modeling tools. The parametric design of complex features will become

172

Enterprise Integration and Management Tool Resources

appropriate for the detail design of systems, components and assemblies, and
still be appropriate for preliminary and conceptual design activity.

6.10.4.8.6.3. Solid Modeling Tool

Many thanks to Richard Fridshal and Steve Sheldon for the refinement of my solid modeling
education.

A key software tool is a solid modeler and the tools normally associated with a
solid modeler. A solid modeling tool supports the design of structures,
mechanical devices and linkages, wire harnesses and tubing. A solid modeler
usually also supports visualization (shaded surfaces), component and
assembly arrangement, documentation, validation (volume properties) and
numerical control programming.

Euclid from Matra DataVision is a solid modeler with a complementary surface
modeler. CATIA™ from Dessault is a popular surface modeler with solid
modeling capabilities. Both are predominantly used for structural and
mechanical design.

The users of electrical/electronic design systems (schematic capture,
component placement) get printed circuit board constraints from the solid
models. They supply printed circuit assembly data that can be converted to a
solid model for arrangement purposes. Various other software tools are used
by down-stream functions to expand and validate the product definition for
performance, manufacturing design, reliability, producibility and maintainability
purposes.

Solid modeling serves to render a design less ambiguous. It supports
"transition to production." Solid modeling allows components and assemblies
to be easily visualized, and component interferences to be easily detected.

6.10.4.8.6.3.1. Modeler Types

Major mathematical innovations were responsible for the evolution from
modelers which were limited to two-dimensional (2-D) wire frame to three-
dimensional (3-D) wire frame, surface and solid modelers. As the following
diagram indicates, the ambiguity of the models declined as the mathematical
rigor and model content improved.

Wire
Frame

Finite
Element

Mesh

Hybrid

Solid

CSGBR

3D

Geometric Models

2D

Finite
Element

Mesh
Surface

Wire
Frame

ambiguous unambiguous

173

Enterprise Integration and Management Tool Resources

2-D wire frame models emulate a traditional drawing, and share its ambiguity. It
is a tedious job for humans to check a drawing or the model from which it was
plotted for errors. The arrangement of the views on a drawing give someone
versed in drawing convention the relationships needed for them to imagine a 3-
D model. Only recently have those conventions been compiled into a
knowledge base sufficiently robust for a computer program to construct an
accurate wire frame model from a paper drawing. This capability is known as
rectification as provided by Metagraphics, Inc. As sophisticated as it is, the
computer program must still ask a human to confirm the assumptions made by
the computer program about simple ambiguities, and to reconcile difficult
ambiguities.

The earlier mathematics, display technology and computer processing power
provided fairly expensive 2-D drafting systems and 3-D wireframe systems.
Wireframe models only represent the edges of the physical objects being
modeled. They do not provide enough information to determine whether a point
is outside, on the surface, or inside an object. Unless line intensity varies with
depth or circular polarization, red/blue color encoding and complementary
polarized or colored "3-D" glasses must be used to provide a depth cue.
Wireframe models are not only ambiguous to software tools, but also visually
ambiguous to humans.

Which corner is in front, a or b?

a

b

174

Enterprise Integration and Management Tool Resources

Although wireframe models can be accurately interpreted from the data used to
display them, the models are useless for the calculation of mass properties or
the generation of fabrication instructions (generative NC). Wire frame modelers
can also be used to create nonsense objects:

Surface modelers require users to define a planar or non-planar profile of lines,
arcs or splines (uniform, non-uniform or rational B-spline or Bezier) to constrain
a surface. The surface can be quadric (second order polynomial) or sculptured
(third through n-th order polynomial). Sculptured surfaces are like thin
membranes stretched upon a bent wireframe (profile) by weights (control
points). The surface of a non-planar profile can vary significantly as a function
of control point values, much like the surface tension on a membrane will affect
its shape. This variability is what complicates the transformation of some
surface data from one form to another. It results in the inexact replication of data
when it is used on different systems.

Surface modeling describes part surfaces but not their interiors. Surface
models can be used to perform limited interference checking where the
surfaces of parts partially penetrate one another, but surfaces that are wholly
within a surface model will not be detected. Humans are still required to
examine surface models to determine if there is, in fact, an interference
problem.

Unlike surface modelers, which require the designer to insure that the various
surfaces on a model are contiguous. Solid modelers start with a solid and use
topology rules to guarantee that all the surfaces are stitched together properly.
A solid model has enough information to determine whether a point is outside,
on the surface, or inside an object. A surface model does not. Automation
requires a complete and unambiguous product definition. Solid models provide
the foundation for that definition.

6.10.4.8.6.3.2. Construction, Representation and Display

To describe any modeler,

175

Enterprise Integration and Management Tool Resources

the construction techniques available to define a model,
the representation of the model,
the display techniques and other
applications of the model

must be distinguished.

Two methods for representing solid models in a digital database are the
constructive solid geometry (CSG) representation and the boundary
representation. A solid model may be constructed (created, designed, input)
using techniques that are independent of the representation of the model.
Unfortunately, many people assume that model construction techniques are
limited to those that may be inferred from their representation technique (CSG
or boundary). Such is not the case.

6.10.4.8.6.3.2.1. Construction

The model construction sequence of a CSG modeler is: select/copy and size
primitive shapes, orient them spatially as desired, and issue the modeler
command(s) which will union, difference or intersect the primitives as desired.
As a consequence of the commands, the Boolean operators and references to
the primitives used are stored in a CSG tree. The CSG tree can be readily
edited to change a model.

The model construction sequence of a boundary modeler is: define points,
define lines/curves with those points, define surfaces with those lines and
curves. Then issue commands that designate the surfaces as the boundary of a
solid, or that extrude, rotate or sweep a defined face into a third dimension to
obtain a solid. As a consequence of the commands, a graph of the topology
and geometry is stored.

Some CSG modelers also allow a 2-D profile to be swept to define a volume
that can be used as a primitive object in subsequent Boolean operations. Many
boundary modelers allow CSG model construction techniques to be used as
well. Only their representations differ.

Many modelers provide both construction options to minimize design time.
Many maintain both the CSG for editing purposes and boundary
representations for display and machining purposes. Some do it all.

6.10.4.8.6.3.2.2. Representation

The CSG representation is a hierarchy of Boolean operations (e.g., union,
intersection, and difference) on objects. Objects are used to describe the
results of combining primitive objects or primitives, like the blocks and cylinder
shown in the lower left portion of the following diagram. Using Boolean
operations, like union (U*) the blocks and difference (-*) the cylinder will result
in the solid L-bracket object or part shown. With many CSG modelers, these
objects (L-bracket) may be used in subsequent Boolean operations to form
more complex intermediate objects, which eventually are combined to form a

176

Enterprise Integration and Management Tool Resources

component part. Objects are the least common denominator of pure CSG
modelers. Only the operations, the names of the primitives used and their
parameters (instance size, relative position, orientation) are stored in a pure
CSG or constructive representation.

*-

U
*

Boundary
RepresentationConstructive Representation

Solid

X 2

*-

U
*

Boundary modelers represent the same part by way of its external surfaces, or
boundary elements as shown in the lower right portion of the foregoing
diagram. Like objects, boundary elements can be unioned (U*) and differenced
(- *) to define the part. Only the names and definitions of the boundary elements
and their parameters (instance relative position, orientation) are stored in a
boundary representation.

The boundary representation is a graph of vertices, edges, and faces, which
represent the topology of boundary model. Each face is bounded by edges.
The edges are bounded by vertices. The vertices are located by points. The
sense (sequence of the line elements) of the face indicates the inward or
outward direction of the face, and, hence, the inside or outside of a solid
bounded by boundary elements.

177

Enterprise Integration and Management Tool Resources

The traditional Winged Edge Topology and a robust, virtual representation of
the element relationships of a virtual boundary modeler are shown in the
following diagrams.

Negative face of edge

Edge in negative face
counter-clockwise

from edge

Edge in negative face
clockwise from edge

Positive face of edge

Edge in positive face
counter-clockwise

from edge

Edge in positive face
clockwise from edge

edge

Negitive vertex
of edge

Posititive vertex
of edge

The orientation of links is as viewed
from the exterior side of the surface.

Assembly

Instance Transform

ObjectAttribute

Shell

Face Surface

Loop

Edge

Vertex Point

Curve

U

U

U

U

U

O

O

O

O

Attribute

Attribute

O

O = Ordered
U = Unordered

ASSOCIATED DATA TOPOLOGY GEOMETRY

"Hybrid" modelers extend the breakdown of parts to objects and then to the
boundary elements that define the primitive objects. They may allow boundary
elements to be defined independent of objects as well. These modelers may
maintain or dispose of objects as intermediate geometric representations once
the boundary model is derived. Those which retain this construction history as
part of the representation can make model editing easier.

Both the CSG and boundary representations are unambiguous, but not unique
(a feature or object can be created many ways). The CSG representation
makes it easy to ensure that the part makes sense. It provides a concise
representation for data storage and analysis. It allows the dimensions of
primitive objects to be adjusted (tweaked) to the extent that the part still makes
sense. The CSG representation makes it difficult to display line drawings, or
have feature attributes like surface finish meaningfully associated with elements
of the model (parts of a primitive may have different finishes).

The boundary representation makes it difficult to ensure validity (nonsense
parts may be possible). It provides a verbose representation. It allows
boundary elements to be tweaked to the extent that they preserve the topology.
The boundary representation also makes it easy to display line drawings,
associate tolerance information like surface finish with the elements of a model.

Some solid modelers are faceted modelers. They represent their curved faces
or the curved surfaces of their primitives with many small polygons. Other
modelers use analytically exact surfaces to represent all their faces or

178

Enterprise Integration and Management Tool Resources

primitives. Some resort to polygons for some but not all surfaces, primitives and
Boolean operations. Many resort to polygons for display purposes only,
because it is less compute intensive.

The use of polygon representations can have adverse consequences for
fabrication and interference analysis if the number of facets are insufficiently
numerous to approximate the intended surface for many applications. This is
normally only a procedural problem, because most modelers allow user control
over the number of facets. A common measure of the adequacy of the
approximation is chord height or crown tolerance. Some modelers allow the
number of facets to be specified as chord height. Unfortunately, some modelers
do not allow the tolerance to differ among the geometric elements in a single
model.

Chord
Height-* =

The real problem with facets arises when faceted primitives are differenced or
intersected with one another. For example, when two circular areas are
differenced from one another, the result is zero area (null set). When two
polygons that approximate the same circular area, but with a different number of
facets, or with the same number of facets rotated relative to one another, are
differenced from one another, the result will be the intersection volumes of the
polygons rather than the null set.

-* =
Such Boolean results will mislead interference analyses, generative NC and
other applications.

Non-Uniform Rational B-spline (NURB) surfaces are popular for master
dimension systems. NURBs allow the faces or surfaces of a solid model to be
represented by a single surface type (plus topology), regardless of its
complexity. This offers some advantage to those programming modelers to
evaluate Boolean operations. However, the evaluation algorithms themselves,
especially those dealing with coincidence and tangency can be very difficult to
develop. Even the simplest objects, like a cylinder can also be represented by
NURBs. NURBs are more computation intensive than the simple analytical

179

Enterprise Integration and Management Tool Resources

equation for a cylinder. Once a NURB evaluator is written that works, however,
it works for all objects. It may be practical to implement it in firmware or even
silicon. Then the processing inefficiencies related to simple objects become
relatively meaningless.

6.10.4.8.6.3.2.3. Display

Graphic feedback of each construction operation is normally provided by the
modeling tool. The display of the model is in itself a software tool. It is
dependent upon the representation. A model defined by a boundary
representation is easier to display than one defined by a CSG representation,
because faces can be layered relative to the viewpoint of the observer and the
obscured faces discarded for display purposes. With a CSG representation,
both the "front" and "back" sides of the Booleaned primitives must be evaluated
relative to the observer to determine what part of which primitive should be
displayed.

6.10.4.8.6.3.2.4. Three Representations Are Required

The constructive representation facilitates model editing. A polygonal boundary
representation facilitates fast display. An exact boundary representation
supports downstream uses of the model, like validation analyses and feature
inference for generative process planning and numerical control programming.
All three representations are required.

6.10.4.8.6.3.3. Features, Parts, Assemblies and Their
Attributes

A product is assembled from major assemblies, assembled from minor
assemblies, assembled from components. There are commonly seven
intermediate levels of assembly from the perspective of a prime contractor or
system integrator. Purchased items are considered to be component parts,
when they are, in fact, assemblies (valves, potentiometers). In reality, there are
many more levels in the assembly hierarchy than is typically managed by a
prime contractor or system integrator.

In the context of this discussion, component parts cannot be disassembled
without destroying the part. Component parts, like printed circuit boards or
integrated circuits are not homogeneous, but once assembled they cannot be
readily disassembled. By this definition, they are component parts. Everything
else is an assembly.

180

Enterprise Integration and Management Tool Resources

The following diagram depicts the breakdown of a product into its constituent
systems and subsystems, which breakdown to component parts, which
assemble into assemblies. Parts can be bulkheads, brackets, printed circuit
boards, resistors, paint, sealant or weldment. The parts consist of objects
and/or boundary elements. The boundary elements may represent features
individually or in groups.

U* U*

U*

AssemblySystem

Feature name = slot
Attribute name = surface finish
 value =±0.001
 units = inches
Attribute name = fabrication cost
 value =30.356
 units = dollars
 •
 •
 •

Constructive solid objects are not shown in this diagram because they cannot
be consistently used to represent design features, let alone other feature types.
Only boundary elements and groups of boundary elements can be used to
describe all feature types.

6.10.4.8.6.3.3.1. Fabrication Features

Part design features include plates, holes, fillets, rounds, slots, webs and
stiffeners. Some of these may also be analysis features. Pocket, fillet, round

181

Enterprise Integration and Management Tool Resources

and weldment are fabrication features. These feature types are related to one
another by way of the boundary elements that are common to both. For
example, the boundary elements of a pocket (manufacturing feature) are
derived from the boundary elements of the plate and stiffeners (design features)
that bound the pocket.

If a cylindrical CSG primitive is differenced (subtracted) from a block CSG
primitive such that it penetrates only one side of the block, the result is
something that looks like a hole. The result as far as a CSG representation is
concerned, is a block minus a cylinder. If a circle is extruded into the block, the
result is something that also looks like a hole. The result as far as a boundary
representation is concerned, is a modification to the surface of the block to
include a cylindrical surface enclosed with a circular plane at one end and open
at the other end. What humans intuitively call a hole is identified as such by
neither modeler.

Hole

Block

The result of the differencing or extrusion operation must be specified by a
"make hole" command/or identified by the human operator to be a "hole", or a
computer program must analyze the model to make that inference. The feature
that resulted from the operation may be given the name : "HOLE #1." The
name can be a unique identifier of the feature or just one of its many feature
attributes.

Features, parts, assemblies and products can have attributes associated with
them. Typically an attribute consists of a name of the attribute (diameter
tolerance), its value in this instance (±0.0003) and a unit of measure (inches).
Reamer #45 is an example of a feature attribute without a unit of measure. An
attribute can also be the name of a computer file or reference document source
and its location. Attributes are categorized into classes or types, but such
classification will not be discussed here.

The geometry (positions of centerline and diameter points) that represents this
feature that we now call HOLE #1 is accurately maintained by the modeler. Its
dimensions can be computed and displayed. However, much more information
must be associated with the feature to make it completely unambiguous for
analysis, handling, fabrication, inspection, assembly, test and maintenance
purposes. Diameter, length and perpendicularity tolerances are examples of

182

Enterprise Integration and Management Tool Resources

attributes that would be appropriate for this feature. Surface finish, location and
parallelism tolerances are examples of attributes of a surface (feature) of the
block or the hole.

If the hole is to be a threaded hole, a thread size or tap number must be
associated with it as another feature attribute. Adding all the necessary feature
attributes to each feature is similar to annotating a drawing, except that the data
in a solid model is readily useful to downstream functions. (Ever try handing a
drawing to a robot?) Annotation, whether on a drawing or with a modeler, is a
lot of work.

An alternative is to define more sophisticated (complex, compound) features,
like threaded holes. These could be differenced with the block as before, but all
the information pertinent to a threaded hole would already be associated with it.
It would not have to be added each time the hole is used in the definition of a
product. It would be readily available in a library of standard features.

Furthermore, the geometry of the feature need not be a simple cylinder. It could
consist of cones and a helix to represent accurately the end of the drilled hole,
its tapered entry or countersink, and the threads as shown below. The more
representative a feature is of the real thing, the tighter a design can be without
problems like an unwanted penetration (threads of adjacent holes interfere).
Regardless of its uses (instances), such a feature need be defined only once.
These pre-defined feature, are to what current "feature modelers" are limited.

Drilled hole

Room for tap

Countersink

Threaded hole

The bolt that goes into the hole could be similarly defined once, and used in
many places. It would consist of additional objects to define the head and driver
geometry (slot, Phillip's, hex, etc.). So why bother to define both a bolt and its
hole? Why not define a bolt as the part it is, and simply difference it with the
parts it intersects to make complementary holes? Sets of bolts could be used to
make a hole pattern with one differencing operation.

The set of attributes that help define the bolt unambiguously for its analysis and
manufacturing purposes must be distinguished from the set of attributes that
help to define the hole that results from a differencing operation with a
workpiece. Furthermore, the dimensions of the hole must be slightly larger to
accommodate the bolt. The hole must be deeper than the bolt to accommodate

183

Enterprise Integration and Management Tool Resources

the tap with which the hole is threaded. The hole must include a conical end to
accommodate the drill bit with which the hole is drilled. The solid modeler must
be smart enough to use the attributes of the hole for a differencing operation
rather than those of the corresponding bolt the user selected for the operation.
Otherwise the user must specify which set of feature attributes to use.

This correspondence between a part and the geometry needed to mate the part
with another part can be extended to all parts, like rivets, keys and key-ways. It
can even be extended to include assemblies like bearing balls and inner and
outer races and the hole into which the assembled bearing must be mounted.
The mating geometry that corresponds to a part or a portion of an assembly is a
form of arrangement criteria known as a connection feature described in the
Arrangement Tool and Information Integration sections.

This is not quite like differencing a cylindrical primitive from a block, but the
construction technique is the same. This technique can be extrapolated to
include manufacturing features, like pockets, but in that context it limits the
construction techniques available to designers. Sweeps, for example, could not
be allowed, because there is no equivalent manufacturing feature or operation.

To solve a functional problem, designers think of webs and stiffeners, not the
pockets of material that might be removed from a workpiece to make the part.
The part may instead be made by fastening separately made webs to a plate, or
it may be built-up from many layers of pre-cut composite material. There are
many different manufacturing features that can correspond to a design feature.
The actual fabrication method may be undefined the moment the design is
conceived. Consequently, it is not wise to extrapolate this correspondence of
constructive geometry with manufacturing features. This is the fallacy of what
has come to be known as feature design.

6.10.4.8.6.3.3.2. Assembly Features

See Assembly Tool description.

6.10.4.8.6.3.4. Feature Design Versus Feature
Recognition

The use of solid model data by another software tool is not as simple as many
people believe. Many see a Boolean operation, like the subtraction of a
cylinder from a block or the addition of two parts, and imagine fabrication and
assembly operations. Sorry, there is no consistent correlation between a
design operation and manufacturing features. Does the design operation
"difference cylinder from block" correlate with the manufacturing operation "drill
hole," "punch hole," "mill hole" or "drill and ream hole"?

To avoid some of these problems, feature design systems limit a designer to a
few pre-defined the fabrication features (hole, pocket). Such limitations can be
particularly frustrating for conceptual and preliminary designers. Even during
detail design, designers think of function rather than manufacturing operations.

184

Enterprise Integration and Management Tool Resources

Structural designers think in terms of plates and stiffeners when designing a
bulkhead. They do not think of pockets. If stiffeners were extruded from a
pattern from a plate, a feature modeler would have stiffeners machined
separately and welded to a plate. It would not recognize the pockets inherent in
the design and have the panel milled from a block.

Fabrication features will seldom be compatible with analysis or process
planning features. It is not enough to know how parts are oriented in an
assembly. A robot must be told how to get them there without any collisions.
Clearly, the features needed by each discipline to perform its function must be
inferred from the design features.

In order for a software tool to make the necessary inferences, it must have
access to the edges and faces which constitute the solid model. For this
reason, a solid modeler must include an exact boundary representation. The
polygonal boundary representation is inadequate for this purpose as described
in the Representation section. A generative process planning or numerically
controlled machine programming tool can interrogate the representation to infer
the manufacturing features, and then infer an optimum sequence for their
fabrication. An analysis tool can interrogate the exact boundary representation
to assess the functionality of the model relative to its requirements. A collection
of analysis tools (design rules checking) can interrogate the representation to
assess how producible and maintainable the design will be.

A complex evaluation scheme is required for a computer to make these
inferences from solid models. Some representations are common to more than
one modeler due to the lineage of the modeler. However, the evaluation
scheme is usually unique for each modeler, because the programmatic
interfaces and command languages are unique for each modeler. They also do
not provide the high-level commands the software tool developers would like.

6.10.4.8.6.3.5. Standard Tools Interface for Solid
Modelers

A standard tools interface has been specified to alleviate the difficulty of
developing tools that use the data generated by solid modelers: Volume I -
Introduction and Rationale and Volume II - FORTRAN procedures of the
Computer-Aided Manufacturing International (CAM-I) Applications Interface
Specification (AIS), R-86-GM-01.1, CAM-I, 611 Ryan Plaza Drive , Suite 1107,
Arlington, Texas 76011, 817-860-1654. The AIS currently only deals with
geometry and topology. It does not encompass dimensioning, tolerancing or
features.

An interface that is compliant with a complete AIS will not only make software
tool development easier, but also provide a degree of independence from any
one modeler. If all the purchased or developed software tools use an AIS
compliant interface instead of interfacing directly with a modeler, the modeler
can theoretically be replaced without having to modify any of the tools.

185

Enterprise Integration and Management Tool Resources

The AIS puts the burden on the solid modeler vendors to provide a consistent
software tool interface. Like the Initial Graphics Exchange Specification (IGES),
the AIS will not become a viable standard unless all the potential buyers of solid
modelers announce that they will buy only those modelers that comply with the
AIS. (Extensions to IRDS to support solid models, dimensioning and
tolerancing based on ATIS may be a more viable standard.)

6.10.4.8.6.4. Assembly Tool

Currently, a designer must specify the position and orientation of each
component in an assembly to make them appear to fit together in the most
compact arrangement possible. During this process, the designer must
consider ways in which to secure the parts to each other and to the structural
system while minimizing tubing and wire harness lengths, maintaining the
required mass distribution, keeping replaceable parts accessible and a host of
other criteria. The designer must measure the distances between mating
surfaces of the parts to ensure that they are properly aligned (parallel or tapered
offset, etc.). In some solid modelers selected geometry can be aligned relative
to one another, but this is still a tedious process.

To reduce the scope of the arrangement problem and perhaps reduce the
number of variables with which a designer must concurrently contend, major
systems are often allocated to a volume of the product (forebody, mid-section).
Although this approach may make the job easier or even possible, it often
results in excess volume in some portions of a product and insufficient volume
in other portions. To contend with insufficient volume, designers resort to more
exotic and expensive system or assembly solutions.

Until an automated arrangement tool is available, the manual arrangement
process could be improved with the introduction of assembly features and
assembly commands. The assembly tool should allow a designer to select
boundary elements of a part and group them as an assembly feature of that
part. The process would be repeated for all the assembly features of the part
and every other part in an assembly. Then the designer should be able to
select an assembly feature on one part (key, bolt shaft), issue an assembly
command like insert and select an assembly feature on another part (key-way,
hole). The assembly tool should then compute the rotation and translation
necessary to move and position the part such that the one assembly feature is
inserted into the other assembly feature as indicated. Place against/offset
would be another assembly command.

Tolerances can be inferred from the assembly command and the geometry.
Tolerances for each assembly feature should default to a standard appropriate
for the circumstance and the material. However, the designer should be able to
override the defaults and specify the tolerance. Interference and tolerance
analysis tools could be an integral part of an assembly tool to provide
immediate feedback to the designer, or they could be separate tools run after an
assembly has been created. In the interest of performance, the latter is the

186

Enterprise Integration and Management Tool Resources

preferred case: use nominal dimensions to create assemblies until an optimal
assembly is selected, then assign tolerances to the assembly features and use
interference and tolerance analysis tools to identify the geometry or tolerances
that must be changed.

The assembly tool should reduce the time a designer spends finding, selecting
and modeling standard parts and specifying their corresponding manufacturing
features. A designer should only need to specify an assembly, like the three
plates shown below.

The designer could use a part selection tool to specify part characteristics, like
those of a bolt fastener. Ask the part selection tool to display candidate bolts.
Select a bolt, and specify the bolt diameter, but not the shaft or thread length as
shown.

The designer would use the assembly tool to insert the bolt in the plate
assembly with a certain fit (lose, tight) such that it does not penetrate the lower
plate. The lower plate is specified as an attachment. The assembly tool should
use the parametric description of the bolt available from a part selection tool to
select a standard bolt length that will not penetrate the lower plate and a
standard thread length that will match or exceed the thickness of the lower
plate. The part selection tool should revise the bolt geometry (based on its
parametric solid model of the bolt) and supply a name (part number) and
associated part attributes to the assembly tool. The assembly tool would then
display the solid model of the standard bolt in the assembly.

A design rules checking tool could be invoked by the assembly tool to assure
that the diameter of the bolt selected by the designer is sufficient for the worst
case shear loads. The bearing area could be determined by the design rules
checking tool from the solid model. The shear strength of the plates and the bolt
could be determined from a standard parts and materials library. The tension
on the bolt could be determined from its torque specifications. The design rules
checking tool could then invoke a structural validation tool to determine the
shear loads. Then the design rules checking tool could ascertain the viability of
the design. A similar validation could be performed for edge thickness
concerns. Fatigue could similarly be evaluated using a structural dynamic
validation tool.

The part selection tool should associate the parametric manufacturing features
that correspond to the bolt with the bolt. The assembly tool should insert
(difference) the two instances of the corresponding hole manufacturing feature

187

Enterprise Integration and Management Tool Resources

and the one instance of the corresponding threaded hole manufacturing feature
into the plate models. When the bolt is disassembled from the plate assembly,
the hole and threaded hole features should remain behind with their respective
plate models as shown.

Similarly, the designer may specify a fastener assembly like a bolt and nut as
shown.

The designer could ask the part selection tool to present candidate bolts, select
a candidate bolt, specify the bolt diameter, but does not specify shaft or thread
length as shown.

Use the assembly tool to insert the bolt in the plate assembly with the specified
fit, such that it penetrates the lower plate with sufficient length to allow the
corresponding nut to be used to secure the assembly (plus three threads
beyond the nut). The assembly tool should use the part selection tool as
described above to select an appropriate bolt. The part selection tool should
revise the bolt information, so the assembly tool will accurately display the
standard bolt and nut in the assembly as shown.

In this case, three instances of the corresponding hole manufacturing feature
must be inserted into the plate models. When the nut and bolt are
disassembled from the plate assembly, the hole features should remain behind
with their respective plate models as shown.

Manufacturing features associated with parts could instead be associated with
their assemblies. For example, a manufacturing engineer may decide that the
tolerance requirements could better be met by drilling through the three plates
while they are in their assembled positions rather than drill the plates
separately. The holes were designed as features of the parts. The
manufacturing engineer need only notify the responsible design engineer of the
needed change, and the designer (or the manufacturing engineer if given the
authority by the responsible design engineer) can simply use a solid modeling
tool to edit the CBS (CSG tree) to break the links between the hole features and
their plates, and establish a link between the hole features and the assembly of
the three plates.

The designer should be able to override the linear translation and rotation of a
part into its assembled position as calculated by the assembly tool. The
designer should be able to specify a trajectory that avoids other parts or fixtures

188

Enterprise Integration and Management Tool Resources

during assembly. This trajectory could then be used by a robot to assemble the
part, or remove it for maintenance purposes.

6.10.4.8.6.5. Composites Design Tool

The ability to tailor the stress and strain characteristics of a structure using
composites and more exotic materials has important benefits for product design.
However, it presents special problems for a solid modeler. With composite
materials, the modeler must deal with many parts with uniform thickness and
complex shapes assembled (bonded) into a single part. The fiber orientation of
each layer usually varies from layer to layer, so the tensile, bending and
compressive strength of each part is directional. Having certain fiber
orientations at certain levels in the assembly will cause the assembly to deform
in predictable and beneficial ways to known loads (flexibility tailoring of aircraft
wings - bend down and twist negative under load; see Structural Validation
Tool section). To take advantage of this, the composites design tool of a solid
modeler must retain the unique identity (fiber orientation) of each layer (part) of
a composite part (assembly) for structural analysis tools to use.

In the composites design process, the overall part shape is defined according to
external constraints (connections, weight, inertia). Then the number of layers
and the fiber orientation necessary to achieve the desired strength, behavior
and shape is defined. This may result in a modification of the part shape. A
composites design tool should support this design process. It should generate
the numerical control program required to direct the movement of an end-
effector to cut (laser, water jet, oscillating knife, router) each ply of the composite
material.

6.10.4.8.6.6. Flat Pattern Design Tool

This software tool should automatically generate flat patterns for deformed
composite and sheet metal (hydro-pressed) as well as simple bent planar parts.
Pattern offsets must be a function of the material and the geometry of the part.
For change control purposes, the flat pattern should be automatically
associated with the model from which it was derived. In addition to fiber
orientation, the derivation must consider fiber re-alignment during hydro-
pressing.

6.10.4.8.6.7. Arrangement Tool

Automated two-dimensional arrangement has long been available for the
placement of electrical components and the routing of their connections (copper
traces). With such a tool, the copper and printed circuit board area are
minimized. Hot or radiating components are placed away from components that
cannot tolerate heat or radiation. Automated three-dimensional arrangement
will be possible with solid model data, eliminating the need to arrange
component models manually.

189

Enterprise Integration and Management Tool Resources

The system definitions available from the System Breakdown Structure (SBS)
described in the Information Integration section indicate the general connectivity
of systems, subsystems and their components. Once the system definitions
have been driven to the detail of component parts, and their specific connection
features (see solid modeling tool section) are established, the three-
dimensional component models can be automatically rotated and positioned.
The router would strive to minimize the lengths and bends of connecting
components (wires, tubes).

Wire harnesses and tube runs need not be specified. Only the connectors and
(pin) connectivity need be specified. The wire harnesses and tubes can be
defined as a result of the arrangement operation, which would iteratively invoke
an automatic routing tool until the arrangement achieved the desired result.

The arrangement criteria could include weight and volume minimization,
balance (center of gravity) and survivability (ballistic strike protection)
requirements. The weight and volume minimization criteria would require that
the lengths of connecting components (wires, tubes) be minimized. Wire and
tube lengths must also be minimized to minimize electrical and fluid resistance.
Tubing bends should be minimized to minimize the energy required to push
fluids through the tubes. Pipes would have routing precedence over tubing and
tubing should have precedence over wire harness, if fabrication cost
minimization were a criteria. The less reliable components would migrate
toward the outside of the product, particularly toward access doors if
maintenance costs were the criteria.

The arrangement constraints could include external and internal surfaces (mold
lines) and physical exclusion (no two parts can occupy the same space at the
same time). Kinematics (mechanical linkage, force and acceleration
requirements) must be preserved. Volumes swept by mechanical linkages must
not violate the volumes of other parts. The attachment points and connectors of
off-the-shelf (existing) parts and assemblies (connection features) must be
used.

Although the arrangement tool is automated and the assembly tool is not, the
tolerance discussion in the assembly tool section applies to the arrangement
tool as well.

Only after the component parts have been optimally arranged should their
assembly sequence (Assembly Breakdown Structure) be defined. Only then
should the attachment points (assembly features) be defined for those
component parts for which attachment points could be left undefined during the
arrangement process. If acceptable attachments cannot later be defined for
some parts, then acceptable but perhaps interfering attachments must be
defined. Then the three-dimensional arrangement program must be re-run to
force the arrangement to accommodate practical component attachments. As a
result of interference and tolerance analyses, some component attachments
may have to be modified to take advantage of more optimum arrangements.

190

Enterprise Integration and Management Tool Resources

Three-dimensional arrangement is an iterative process. It should be done
periodically throughout the product definition process. The more often it is done
early in design, the less likely major problems will arise during later activities,
and the more likely the product volume will be minimized. The use of
connectivity features will allow the arrangement tool to arrange even abstract
representations of components or systems. As components are defined to a
detail sufficient for their unambiguous manufacture, connection features will
become assembly features or at least correlate with them.

As excess volume appears during the arrangement process, the external
surface definition should be shrunk, and the arrangement tool re-run to see if all
the components can still be made to fit into the smaller volume. If so, the
structural, fuel and other systems can be reduced proportionally, saving weight
and material cost. If not, then the volume constraints must be relieved, or the
external (wetted) surface violated. This iterative process could be automated by
specifying volume reduction criteria, like "preserve wetted surface proportions"
(same shape but smaller).

6.10.4.8.6.8. Automatic Interference Checking Tool

An automatic three-dimensional interference checking tool could warn a
designer when parts interfere during or after a manual assembly process. It
would evaluate the product geometry as defined, and identify all part
intersections (intersection flashes or assumes a different color). Such a tool
should be an integral part of an arrangement tool.

6.10.4.8.6.9. Tolerance Analysis Tool

The arrangement, routing and interference checking tools described use
nominal tolerances when spatial relationships are defined. A tolerance
analysis tool should apply various permutations and combinations of individual
part feature tolerances to the packaged product (or a portion thereof). It should
re-invoke the interference checking software tool to determine the effect of the
tolerances in each situation. Where no interference problems exist, the
tolerance analysis tool should try relaxing the feature tolerances until an
interference problem is detected. It should then identify what tolerances could
be relieved to reduce the cost of fabrication and assembly. The tolerance
analysis tool should iterate with the arrangement and interference checking
tools to optimize the arrangement without tightening the tolerance requirements.
It should indicate what tolerances should be tightened to avoid a tolerance
build-up problem.

6.10.4.8.6.10. Tolerance Reality Check Tool

As fabrication processes are defined with a manufacturing process planning
tool, the fabrication processes are associated with fabrication features. Where
the boundary elements of fabrication features coincide with the boundary
elements of assembly features, a tolerance reality check can be performed. If
the manufacturing process chosen for a fabrication feature is such that the

191

Enterprise Integration and Management Tool Resources

tolerance assigned to an assembly feature boundary element is unrealistic, this
should be identified by the tolerance reality check tool. Then the tolerance
associated with the assembly feature must change or the fabrication process
must be changed.

6.10.4.8.6.11. Assembly Simulation (Electronic Mockup)
Tool

This software tool should animate the assembly, removal and replacement of
parts and assemblies in a packaged product (with the movement of any
mechanisms defined with the kinematics software tool). It should optionally
include the movement of foreign objects (tools, end-effectors, hands, etc.) within
the assembly and highlight collisions.

6.10.4.8.6.12. Design Validation Tools

Product performance, reliability and maintenance requirements can be satisfied
in many ways. Each of those solutions may involve many different design
features. Each design feature corresponds by way of its boundary elements to
one or more manufacturing features or a portion of a manufacturing feature.
Each manufacturing feature has unique producibility (material handling,
fabrication, inspection, assembly and test) requirements associated with it.
Each of them is impacted by the materials involved. The net effect of these
implications must be determined to select the optimum design solution.

Only gross qualifiers like weight, cost, status and quantity can be associated
with parts. Even part cost can be appropriately associated with a part only if the
part is to be purchased "off-the-shelf." The cost of a part to be manufactured
must be determined from the accumulated cost of the material and each
operation performed on it, including tool wear.

It costs money and time to buy the bulk material. It costs more money and time
to cut or forge a workpiece from the bulk material. It costs money to store the
material and workpiece, and move them about the factory. It costs money to buy
or develop tooling for the workpiece or part. It costs time and money to set-up
the workpiece for fabrication and inspection and for assembly and test. These
costs can be associated with the part by way of its manufacturing features and
the process and resources used to create them. Each process operation uses
skills for the duration of that operation, which relate to the employment of valued
resources for a time, which equate to cost and schedule.

Tools and fixtures (tooling) are among the resources described in the Resource
section. Like the other resources, they have unique skill sets. The skill sets of
some tooling are such that that it is used only to manufacture the instances of
one part. Other tooling may be used on more than one part. Both are
deliverables. More accurately, a feature of the tooling is related to a feature of a
part. The cost of acquiring, refurbishing or replacing that tooling should be

192

Enterprise Integration and Management Tool Resources

distributed among as many instances of one or more features as possible to
reduce the effective cost of that tooling.

This is but one example of the costs that can be cumulated up the System and
Assembly Breakdown Structures to determine the cost of the product, or the cost
of any subsystem or subassembly. The impact of each design feature on the
overall cost of the product can thereby be assessed.

Not all design features or their corresponding manufacturing features are
known when design decisions must be made. Significant commitments must be
made when system designs are largely abstractions of the product definition
before it is sufficiently complete for production purposes. In this case the system
requirements and attributes can be used to find similar existing systems for
which there is manufacturing, maintenance and cost data. Estimates of the cost
of each attribute of a new design can be interpolated between or extrapolated
from that experience for design optimization purposes.

An alternative is averaging the cost of part classes. To provide cost feedback
for those involved in the preliminary and conceptual phases of design, the costs
associated with a class of features like bolt holes, can be averaged to establish
a cost for that class of features for preliminary design purposes. The costs of all
fastener types must be similarly averaged to derive a cost appropriate for the
conceptual phase. Adhesives would be included in even a broader class of
fastening devices. These costs would be attributes of comparably abstract
features used to define the product during each phase of the design. As the
design becomes more detailed and component parts are designed, then the
experience with individual manufacturing and maintenance features can be
used to make good design decisions.

It is one thing to validate a design by way of simulation or test. It is another to
use validation tools to determine which among the many design versions is the
optimum design. To this end a suite of validations tools must be run on each
version of the product.

With a parametric product definition, the validation tools could run iteratively,
creating their own versions of the product design. They could iterate toward an
optimum solution for the product. They could employ a solid modeler to
determine the arrangement and its inertial effects. However, requirements often
conflict. The desire to make a product lighter to improve its performance
conflicts with the desire to retain its strength.

A quality design performs as required and is reliable, producible and
maintainable. Performance, producibility, reliability and maintainability each
have a cost associated with them. There are large costs associated with failing
to meet a performance requirement. There are costs associated with over-
riding government or enterprise or Program part standards. Schedule also has
a cost associated with it, be it a function of progress payments or a product
"window of opportunity," or customer satisfaction. In order for a designer or

193

Enterprise Integration and Management Tool Resources

optimization tool to trade design options, a single measure of merit must be
provided as feedback. That measure is cost.

The following validation tools are a few examples of those which may be used
to determine if a design meets its requirements. While the cost of design
versions provide a measure of merit for trade studies, validation tools identify
the designs that meet or exceed their requirements.

6.10.4.8.6.12.1 Design Rules Checking Tool

Design rules checking is a phrase that was once limited to informing a designer
that a non-standard part or tool was specified on a drawing. With the advent of
solid modelers, the concept has expanded to include producibility criteria
(corner radii too small, edge distance too little) and maintainability (special tool
required to remove part). These criteria can only be usefully associated with
features. Their common measure is cost.

Solid models expand the practical domain of design rules checking. The
minimum costs and cost multipliers as a function of adjacent features need only
be maintained at the feature level. The ability to inherit costs up the product
structure is inherent in the data structure of many solid modelers. However,
component costs are more accessible as part of the System and Assembly
Breakdown Structures maintained by the Product Data Manager. Hence, part
costs should be cumulated from their feature costs and maintained as an
attribute of the component.

194

Enterprise Integration and Management Tool Resources

The minimum cost of an isolated feature is the same for all of its occurrences if
the same material is involved. Feature costs increase when the operations
needed to make or inspect a part or test an assembly are complicated by the
other features of a part or those of the parts adjacent to it. The following figure is
an example of an unnecessarily costly part.

Reasonable perpendicularity tolerance

Sufficient room for tap

Reasonable surface finish

Compliant with safety specifications

Sufficient edge distance for standard tool

Standard bolt hole feature

Sufficient stress relief

Sufficient thread grip length

Avoid penetration

The fabrication cost would be reduced if the threaded hole could go through the
"bottom", and be drilled and threaded from the "bottom". If not, perhaps the
obstructing flange could be removed, added later or drilled to provide sufficient
access to make the threaded hole from the "top" of the part. Each of these
process costs increase with material hardness or abrasiveness. Each increase
in cost as the tolerance requirements become more severe.

Unless an access hole is provided in the overhanging flange, the assembly and
maintenance costs associated with this part are higher than they need be. A
special tool (bent driver) must be tediously employed to install or remove the
bolt that goes into the hole.

A design rules checking tool should enforce user-defined rules on model
geometry and attribute values. In a batch environment, it may invoke
sophisticated analyses to determine the appropriate geometric constraints or
attribute values for the part, system or assembly model being checked. It should
use the attribute values of the deliverable being checked to determine which
analyses should be invoked.

In an interactive environment, a design rules checking tool would rely on
relatively simple range or value constraints (part number attribute value
matches that of an approved part, fillet radii should be one of a set of radii which
correlate to standard cutters, etc.). The interactive user would tell the design

195

Enterprise Integration and Management Tool Resources

rules checking tool which analyses to invoke. The design rules checking tool
should use the attribute values of the deliverable being checked to determine
whether the requested analysis is possible, and notify the user accordingly.
When a simple constraint check involves a search of large databases, it may be
delegated to the batch environment. The tool should facilitate such
performance tuning if an on-line environment is to be properly supported.

Since the Process Manager allows subtasks to be defined on-line, and a
subtask can involve the invocation of a validation tool, there is no need for an
interactive Design Rules Checking Tool per se. Similarly, any batch checking
should be keyed to one or more subtasks in the Task Breakdown Structure
(Information Architecture) managed by the Process Manager. The Process
Manager would trigger the validation tool the moment the conditions for the
invocation of that subtask (preceding subtask complete, model is not likely to
change, scheduled start time, etc.) are met. The ability to associate all the
analysis programs that can be executed in batch to such subtasks and have the
Process Manager invoke them eliminates the need for a separate batch design
rules checking tool as well.

Consequently, the role of a design rules checking tool is reduced to that of a
tool that determines what validation subtasks are appropriate for a System,
component or assembly. That tool is called the Validation Selection Tool.

6.10.4.8.6.12.2. Validation Selection Tool

Designers commonly determine which analysis and test functions should be
involved in the validation of a design. Depending on the experience of the
responsible engineer and the circumstances, insufficient or inappropriate
analyses and tests may be conducted. A conservative engineer may request
more numerous and more sophisticated and expensive analyses and tests than
are necessary. The same engineer under schedule pressure may do the
opposite.

To assure that the analyses and tests that are necessary to validate the design
are conducted, and no more, a validation selection tool is desirable. This tool
could use system requirements and system, part and assembly attributes to
determine which analyses or tests should be performed to validate that a
deliverable does, in fact, meet its requirements.

Once the necessary validations are determined, this tool could invoke the
Process Manager and establish subtasks for each validation. It may even use
deliverable dependencies among the subtasks to specify subtask sequencing.
Initially, this tool would be invoked from within the Process Manager by
responsible engineers who are delineating the subtasks for the task for which
they are responsible.

196

Enterprise Integration and Management Tool Resources

6.10.4.8.6.12.3. Mass (Volume) Properties Analysis Tool

This tool calculates the surface area, area moments of inertia, volume and
volume moments of inertia of a solid model. It stores the results so that section
properties and mass properties can be obtained for other tools. If a material
density value is available by way of the value of a material attribute, then the
mass and mass moments of inertial of the model can be computed. If the value
for the acceleration due to gravity is also available, then the weight of the model
can be calculated as well.

6.10.4.8.6.12.4. Mesh Generation Tool

A mesh generator should automatically generate a mesh from a solid or surface
model. The generated finite elements should be compatible with structural
dynamic, thermodynamic and fluid dynamic validation tools or be the basis for
their derivation. This would eliminate the need to have and to train human
resources to use the many mesh generators that are peculiar to each validation
tool.

6.10.4.8.6.12.5. Static and Dynamic Structural Validation
Tool

NASTRAN, SUPERTAB, PATRAN, MARC, ANSYS and Strain Generation are
popular structural analysis tools. Finite element analysis tool capabilities
should include linear and non-linear static, dynamic steady state, random and
frequency response and transient behavior analysis for heat transfer and fluid
as well as structural problems. It should support design optimization. It should
determine plane stress and plane strain with symmetric or unsymetric loading.

Finite element modeling elements types should include isoparametric, linear,
parabolic and cubic. General shells, laminated composite or sandwich shells,
thick shells, solid beams, spars, springs, mass elements and rigid elements
should be also be supported.

Given the mass properties of a structural design and a specific load regime, the
deformation of the structure can be calculated and used to determine its effect
on the loads. The iterative invocation of validation tool sets is exemplified in
more detail in the Aerodynamic Validation Tool section.

6.10.4.8.6.12.6. Mechanics Validation Tool

Mechanics validation tools should use the solid or abstract models of
mechanical systems, their connection features, material attributes and mass
distribution to determine the behavior of mechanical systems. ADAM is a
popular mechanics validation tool.

This software tool should allow one or more sets of at least ten elements each to
be interconnected and interdependently moved according to user defined
constraints. The constraints should include range and degree of motion relative

197

Enterprise Integration and Management Tool Resources

to mechanical connection features that may connect with structural or other
mechanical connection features. Six degrees of freedom are possible at each
connection. Each element may be defined as a solid model or represented by
simple abstractions like those used in mechanical schematics. The element
definitions may be mixed. Hence, the element definitions may or may not
include the volumetric information necessary for collision detection or
arrangement purposes. Inertias and stress/strain relationships may be
associated with linkage elements with or without volumetric information
associated with them. This would allow mechanical system inertia, deflections
and excess stresses to be determined early in the design process without the
need for a solid model of the mechanical system.

Model motion should be definable by time as well as position. The tool should
display the mechanism at any user selected time or position. I should calculate
joint displacements, velocities and accelerations on demand. Given mass, it
should also calculate joint forces. A color change should indicate when and
where these values exceed allowable limits.

Where volumetric information is available, trajectory volumes should be
computed for collision detection purposes. The offending link should change
colors while it interferes with another part. The kinematic validation tool should
optionally union the trajectory volumes to determine the total volume swept by
the linkage elements in motion (envelope). Then it can be saved and used as a
representation of an assembly of the mechanical system for arrangement
purposes.

Where material property information is available, the kinematic validation tool
should optionally compute the deflection of each linkage element and the net
effect of all linkage element deflections on the mechanical assembly under
specified loading conditions.

6.10.4.8.6.12.7. Thermodynamics Validation Tool

Thermodynamics validation tools should use the assembly models (spatial
relationships) of a product, the attributes of their components and their
connectivity to represent the product or its parts for thermodynamic analyses
purposes. The mesh provided by a mesh generation tool may be adequate for
most thermodynamic radiation or convection analysis purposes. Sinda and
Thermal Networking are popular thermodynamic analysis tools.

6.10.4.8.6.12.8. Aerodynamics Validation Tool

Gross abstractions of vehicles are used during conceptual design. Surface
models (lines/loft) are usually used during preliminary and detail design. With
the advent of solid models, aerodynamics validation tools should use the wetted
portions of the solid models of a product to represent the product for
aerodynamic (lift, drag, pressure, loads) validation purposes during detail
design. The mesh provided by a mesh generation tool may be adequate for
most purposes. VSAero is a popular tool for determining aerodynamic loads.

198

Enterprise Integration and Management Tool Resources

Aerodynamics, structures and mass properties validation tools should work in
harmony to facilitate design optimization for an entire mission rather than for a
few discrete parts thereof. Given the mission profile and a structural design, the
aerodynamics and mass properties validation tools can be executed to provide
loads and inertias to the static and dynamic structural validation tools. The
structural validation tools would then determine the deflection of the structure
and its dynamic behavior. The aerodynamics and mass properties validation
tools would then be re-executed to determine the air loads of the deformed
structure and so forth until the rate of change of air loads due to structural
change declined to a tolerable level. This process could be automatically
repeated by a Process Manager to provide data at intervals throughout the
mission to determine where is the maxima of the structural load regime. The
process could be repeated for smaller intervals in those regimes until the true
maxima is determined.

If the structure is made of composite materials, then the interaction of these
three validation tools can be used to determine the composite fiber orientation
needed to achieve aerodynamically desirable wing bend, twist and camber
under load.

6.10.4.8.6.12.9. Stability Validation Tool

Static and dynamic stability validation tools should use the results from mass
properties (balance, inertias), aerodynamic (air loads), propulsion (thrust vector,
torque), control system (control rate and amplitude) and static and dynamic
structural (twist, bending, dampening) validation tools to model the product for
stability analysis purposes.

6.10.4.8.6.12.10. Signature Validation Tool

Gross abstractions of vehicles are used during conceptual design. Surface
models (lines/loft) are usually used during preliminary and detail design.
Signature validation tools should use the solid or surface models of a product
and their connections and material attributes to represent the product for
signature analyses (microwave, optical, acoustical) purposes. The mesh
provided by a mesh generation tool may be adequate for most purposes.
MISCAT is a popular radiation signature analysis tool.

6.10.4.8.6.12.11. Reliability Validation Tool

Obviously, the more reliable a system or component is, the more available
(ready to perform mission) and useful the product will be, and the less likely that
costly maintenance will have to be performed. To minimize input data
development, the data generated from the finite element modeling and analysis
subtasks and the design models should be used by a tool like Reliability And
Maintainability using Computer Aided Design (RAMCAD) to generate data
relevant to life estimates. Failure mode characterization using RAMCAD can be
a significant input to maintainability and supportability analyses.

199

Enterprise Integration and Management Tool Resources

Designing circuits to perform at maximum ratings is considered poor design
practice under most circumstances. Conservative designers usually de-rate a
device to fractions of the maximum values. If de-rating is desired, all values are
multiplied by their associated de-rating factors. The de-rating factors are
obtained from a de-rating specification. Each contractor creates and maintains
a separate de-rating policy. However, Program specific de-rating guidelines do
not always cover the full spectrum of electronic components. The knowledge
required to properly de-rate components for which there are no guidelines is the
intellectual property of a few experts. This makes it a candidate for a rule-based
expert system. The de-rated parameters derived by the expert system should
be related to the corresponding subsystems or components in the SBS so that
they can be used for the validation of those subsystems or components.

6.10.4.8.6.12.12. Producibility Validation Tool

A producibility validation tool need only invoke a generative process planning
tool and get a positive result to determine if a part or assembly is producible.
The generative process planning tool would determine the skills necessary to
fabricate and inspect a part or assemble and test an assembly. The
producibility validation tool would then invoke the Resource Manager to
determine if resources with those skills will be available when they are needed.

More important are estimates of the production cost of alternate designs. If a
resource set is selected from the Resource Manager and established as a
constraint on the generative process planning tool, then the manufacturing cost
of a design can be calculated by invoking the generative process planning tool.
It would determine the time of each resource required to perform the operations
necessary to manufacture the item. Multiplying those times by the resource cost
($/hour) would result in the cost to produce a design. Doing this for each design
variant will identify which is the most producible.

Until there is a generative processing tool, a rule-based producibility validation
tool must be used. Such a tool would notify a designer when fabrication
features (holes, fillets) require the use of non-standard tools, when bend radii is
tool small to avoid cracking, when holes are too close to an edge, etc. (see
Design Rules Checking section).

6.10.4.8.6.12.13. Maintainability Validation Tool

Maintenance may involve any collection of subtasks from replenishing fluids to
major disassembly, repair, replacement and re-assembly subtasks.
Maintenance subtasks may have to be performed by resources with limited
skills anywhere and under any conditions from the relatively benign office
environment to the manufacturing floor to the north pole or under water.
Consequently, no special resources (tools, humans) should be required to
perform a maintenance operation. The operation should be as simple and fast
as possible.

200

Enterprise Integration and Management Tool Resources

Simulations of maintenance operations are necessary during the early design
phases to insure that the product will be maintainable before the design is
committed. A tool like RAMCAD would be appropriate for this purpose.

6.10.4.8.6.13. Design Documentation Tool

Solid modelers may one day automatically generate drawings with very little
help from a human resource. Most three-dimensional (3-D) wireframe, surface
and solid modeling tools include a drafting tool. The drafting tool should allow
human resources to derive two-dimensional (2-D) representations from 3-D
models and embellish them as drawings. Drawing annotation that is unique to
the drawing and cannot be derived from the attributes of the 3-D model can be
added with the drafting tool.

Transferring views of 3-D models to an inexpensive 2-D modeler for drafting
functions reduces the cost of drafting. However, for data consistency purposes,
the drafting tool should be part of or at least linked to the modeler. Then
changes to the model will be automatically reflected in the drawing.

If changes to drawing geometry can be made independent of the 3-D model
from which it was originally derived, or vice versa, then the drawing can differ
from the model. Those validating, fabricating, inspecting, assembling or
maintaining the part on the basis of the drawing will generate failure and fit
problems for those who base their work on the model and vice versa.

Ideally, it should be impossible to modify derived geometry independently of the
model. The drafting tool should require that the 3-D modeling tool be the only
means to change the geometry depicted in a drawing. If the derivation process
results in an independent drawing model, then care must be taken to assure
that changes to geometry are always made to the 3-D model and the
corresponding drawing geometry is re-derived. The drawing tool should insist
that any changes to the geometry be performed on the source model.

Model changes should automatically be reflected in the dimensions depicted in
the drawing. The drawing tool should notify its user of annotations that could
not be automatically updated. These usually have no relationship to the
geometry, so little modification to the drawing should be required.

The actual paper or mylar drawings that are plotted from the drawing model
present a similar synchronization problem. The drafting tool should always print
a warning that the drawing was derived from a computer-based model that is
considered to be the "master drawing." No changes are to be made to any
printed drawing. All changes are to be incorporated into the computer-based
master and the drawing re-plotted.

For government customers, the dimensioning and tolerancing capabilities of the
drafting tool should comply with ANSI Y14.5, DOD-STD-100 and ANSI
Y14.26.3. Maintenance requirements for drawings and associated lists,
databases, microfilm and referenced documents may be required. Electronic

201

Enterprise Integration and Management Tool Resources

approval procedures should provide for the entry of the names or signatures of
the approvers into the signature and revision blocks of the affected drawings by
whatever means that will assure accountability. Line conventions and letters
may vary for CAD prepared drawings as long as legibility requirements, like
those imposed for microfilming purposes by MIL-M-9868, are met.

When magnetic tape or other digital media is specified as the physical media for
a deliverable, it should conform to MIL-D-28000. If IGES engineering drawing
data files are involved, they should be Class II tool data subsets. If printed
circuit board descriptions are involved, their description and form should
conform to ANSI/IPC-D-350 or MIL-D-28000. If raster engineering drawing data
files are involved, they should comply with MIL-STD-1840.

When digital product definition data is exchanged between dissimilar systems
in the format of the Initial Graphics Exchange Specification (IGES) per ANSI
Y14.26M, copies of the drawings derived from such digital data should include
the following legend inserted in a box under the last entry under the revision
block:

[IGES - ()]
Inside the parentheses are to be inserted the IGES version number.

6.10.4.8.6.14. Manufacturing Preparation Tools

The following tools are used to design the manufacturing part of the process.

6.10.4.8.6.14.1. Manufacturing Process Planning Tools

A manufacturing process plan differs from an engineering plan only in the skills
required to conduct the subtasks, the granularity of the subtasks (operations)
and the repetitiveness of the subtasks (make 20 of these). Consequently, the
Process Manager could be used to delineate and sequence manufacturing
tasks, subtasks and operations and maintain them in the Task Breakdown
Structure (see Information Integration section). However, the scheduling of
subtasks at the various manufacturing stations can be very complicated. A
Manufacturing Resource Planning (MRP) tool may have to be used.

6.10.4.8.6.14.1.1. Variant Process Planning Tool

If no generative process planning tool is available, a variant process planning
tool should be used. With variant process planning, old or standard plans are
recalled as a function of the characteristics (attributes) of the part being
processed. The plan most appropriate for the specific part is copied and
manually modified, considering part peculiarities and current manufacturing
capabilities (skills). It is then issued as the process plan for the new part.

6.10.4.8.6.14.1.2. Generative Process Planning Tool

Generative process planning is now a common phrase. It was invented to
describe the automatic generation and sequencing of fabrication and assembly

202

Enterprise Integration and Management Tool Resources

instructions. A software tool evaluates a part and goes through much the same
thought process as a human planner to arrive at an optimum process plan.

As used here, generative process planning includes the handling, inspection,
test and maintenance functions of the manufacturing process as well as the
fabrication and assembly functions. The instructions may be human readable
for manual fabrication and assembly, or in digital form for the computers that
control the shop floor, cells and the handling, fabrication, inspection, assembly
and test machines that comprise the cells.

The various handling, fabrication, inspection, assembly, test and maintenance
operations have detailed activities associated with them. These operations
typically relate to features of parts. A tapped hole, for example, may involve
rough and finish drilling operations, a countersink operation and a threading
operation. Each operation may involve different tools. Handling (set-up),
inspection, assembly and test operations must be defined as well. These
operations may be associated with parts or their manufacturing features. The
actual conduct of the operations are specified by Numerically Controlled
machine (NC) programs as described in the Generative Numerical Control Tool
section.

There is often more than one set of manufacturing operations that can be used
to make a feature. For each set, the manufacturing operations required to make
an isolated feature are the same for all uses of that feature. These operations
may become more involved when the feature is used in a compromising
situation. The material handling, fabrication, inspection, assembly and test
processes may also be complicated by other features of a part or adjacent parts
in an assembly. For example, the operations involved in making a tapped hole
may become very difficult and complicated if it can only be done from one side,
and that side is obstructed as shown in the following figure.

Drilled hole

Fi l let

Round

Countersink
Threaded hole

Slot

Workpiece

203

Enterprise Integration and Management Tool Resources

Solid modelers make generative process planning practical because they allow
features to be defined. Operations that are only meaningful at the feature, part
or assembly level can be maintained at that level. The machine and human
resource instructions for a fabrication, inspection, assembly, test or
maintenance operation are a deliverable of a process planning subtask. That
deliverable is associated with the CBS (fabrication or inspection) or ABS
(assembly or test) as appropriate for the operation it defines.

The manufacturing schedule is derived from the fabrication and assembly
sequence and maintained in the TBS. Ideally, the instructions are executed
such that resources are bound to the subtask and parts are fabricated and
inspected just in time for their assembly and test. Resource unavailability may,
however, disrupt the ideal. Disruptions to disruptions lead to the use of a
commercial MRP II system.

There can be many ways to produce (drill, punch, etch) a manufacturing feature
(hole). More than one process plan can be derived for the same part. The
generative process planning tool will likely be invoked during design to validate
the producibility of each design and help provide an estimate of its cost. It
should use the resource set with the optimum combination of skills and
proficiencies. It will likely be invoked during manufacturing to accommodate the
unavailability of resources or the availability of new resources.

The generative process planning tool should infer from the component model
geometry the manufacturing features necessary to fabricate a part to match the
design model within its tolerance requirements. Given the features and the
assigned resources, it should strategize an optimum fabrication sequence. It
should similarly infer inspection features and inspection operations. It should
generate all the steps necessary to handle and restrain the material and any
intermediate (synthetic) parts.

The generative process planning tool should be smart enough to require a
spotface operation before a drill operation that is not perpendicular to a surface.
It should identify the need for multi-use fixtures and tools by scanning the model
database for parts with similar manufacturing and inspection features that would
require such fixtures and tools. If no compatible fixtures are found, it should
invoke the generative fixture design tool to create the tool, or alert the fixture
design function.

Similarly, the generative process planning tool should infer from the spatial
relationships of parts in an assembly the manufacturing and test features
necessary to assemble and test the assembly. It should generate all the steps
necessary to handle and fixture (jig) the parts for assembly and test, including
fixture design, assembly (robotic) programming and test programming. It should
identify the need for any intermediate (synthetic) assemblies and accommodate
their handling and storage.

It should be smart enough to invoke a robot simulation tool to help determine
the optimum assembly procedure. It should identify the need for special fixtures

204

Enterprise Integration and Management Tool Resources

by scanning the modeler database for assemblies with similar manufacturing
features. If needed fixtures are not found in inventory or are not on order, it
should invoke the generative fixture design tool, or alert the fixture design
function. It should select the optimum assembly and test process plans for the
shop floor conditions anticipated when the parts are to be assembled and
tested.

The generative process planning tool should also use fabrication and
manufacturing feature relationships to identify incompatible operations. For
example, associated with the fabrication features of a flange might be a welding
process or the use of a relatively inaccurate drilling process for the holes in the
flange. The fabrication features have one or more boundary elements in
common with an assembly feature of the flange. The assembly feature of the
flange is used to mate with an assembly feature on a mating part. Associated
with the assembly of those two assembly features is a tolerance. The
generative process planning tool should examine the fabrication processes
associated with each of the fabrication features that share boundary elements
with an assembly feature to determine if the fabrication process is capable of
fabricating the feature with sufficient accuracy to assure that its related
assembly feature will assemble according to the assembly tolerance.

6.10.4.8.6.14.1.3. Parts Nesting Tool

The flat patterns that result from a sheet metal design tool should be used by a
parts nesting tool. The parts nesting tool should use material attribute values
and bulk material size to select which parts to position and orient the pattern on
bulk material such that material waste is minimized. It should generate end-
effector motion or punch instructions to cut the parts from the bulk material.

6.10.4.8.6.14.2. Manufacturing Tool Design Tools

Both fixtures (jigs and clamping devices) and tools (drills, reamers, cutters) are
often called tooling.

6.10.4.8.6.14.2.1. Tool Design Tool

Tool designers use part geometry as the requirement for the design of special
tools. For example, a mill specially shaped to cut many part fabrication features
in one operation.

If no generative tool design tool exists, extensions of the model construction and
parametric design tools to include features appropriate for tool design, like
helixes (drills) and tool related parameters like shaft type and draft angle would
be desirable. The resulting tool should include or have access to a library of
material properties for both tools and workpieces, a library of machine
parameters and a library of tool holders. It should present this information on
demand in a format conducive to good tool design. After a tool designer has
defined a tool, the tool definition could be given to the generative process

205

Enterprise Integration and Management Tool Resources

planning and NC programming tools to generate the human and machine
resource instructions necessary to fabricate the tool.

6.10.4.8.6.14.2.2. Generative Tool Design Tool

The generative tool design tool should automatically generate an optimum tool
design based on the geometry of the feature it is to make, the material(s) it is to
cut and the range of machine parameters (feed rate, spindle rpm) available.
The resulting tool definition could be given to the NC programming function or
generative NC tool by way of the generative process planning tool to generate
the machine instructions necessary to fabricate the tool.

6.10.4.8.6.14.2.3. Fixture Design Tool

Fixture designers use part geometry, machine beds, the factory floor and
adjacent parts in assemblies as constraints on the design of fixtures.

If no generative tool design tool exists, extensions of the model construction and
parametric design tools to include features appropriate for fixture design would
be sufficient. A fixture design tool should include or have access to a library of
machining area (mill bed, coordinate measuring machine bed, factory floor) and
available attachment geometry (slots, pin holes) or functions (vacuum) to
provide a factory constraint on fixture design. It should access the process plan
to determine which machining area and finished part are involved. It should
scan the process plans to find those with similar feature requirements to locate
existing fixtures that may be appropriate for the new part. From those fixtures, it
should select the one to be used for this part or used as a baseline to design a
fixture for this part. It should present the most appropriate fixture, the machine
bed and the part, or intermediate part, to the fixture designer in a way that is
conducive to good fixture design. After a fixture designer has defined a fixture,
the fixture definition could be given to the generative NC programming tool by
way of the generative process planning tool to generate the fixture tool
according to the optimum process determined by the generative process
planning tool.

Normally, a modified fixture must be saved under a new name to preserve the
fixture definition from which it was derived. If the owner of the source fixture
determines that the modified fixture can be used for both the old and new parts,
it can be saved under the old name.

6.10.4.8.6.14.2.4. Generative Fixture Design Tool

A generative fixture design tool needs to know the process by which a part is to
be fabricated, inspected, assembled or tested. It needs the geometric
constraints of the part and the machine on which the part is to be fabricated,
inspected, assembled or tested. It needs to know the material to be cut, the cut
rate, and the tool type so it can determine the loads that will be applied to the
part by the machine. It needs to know the tolerance requirements of the part to
determine the stiffness requirements of the fixture. If the tool access

206

Enterprise Integration and Management Tool Resources

requirements are based on tool centerline only, then the generative fixture
design tool will need tool geometry information as well.

Given this information, the generative fixture design tool should automatically
generate a fixture design. The resulting fixture definition could be given to the
generative NC programming tool by way of the generative process planning
tool to generate the human and machine resource instructions necessary to
fabricate the fixture.

6.10.4.8.6.14.2.5. Mold Design Tool

If no generative mold design tool exists, an extension of the model construction
and parametric design tools to include features appropriate for mold design, like
material supply ports and mold release angle could be used. This tool should
include or have access to a library of material properties for molds, casting and
release material, a library of mold machine parameters (pressure, feed rate,
temperature) and a library of mold holders (fixtures). It should present this
information on demand in a format conducive to good mold design. After a
mold designer has defined a mold, the mold definition should be given to the
NC programming tool by way of the generative process planning tool to
generate the machine instructions necessary to fabricate the mold.

6.10.4.8.6.14.2.6. Generative Mold Design Tool

The generative mold design tool should automatically generate a mold design
(model and attributes), including the necessary release offsets, given the
geometry of the part it is to form, the material(s) involved and the geometry of
the mold machine. The resulting mold definition could be given to the
generative NC programming tool by way of the generative process planning
tool to generate the machine instructions necessary to fabricate the mold.

6.10.4.8.6.14.3. Machine Programming Tools

Machines (mills, lathes, robots) are the resources used to perform the
fabrication process. Tooling is usually required to facilitate the process

6.10.4.8.6.14.3.1. Machine Programming Tool

Machine programming is an extension of process planning into the details of
material modification (machining, forming, etching) and part assembly. It is an
extension of process plan instructions into the digital world of Numerical Control
(NC - numerically controlled machine), robotics and cell control.

Fabrication and assembly features and assembly commands dictate certain
handling, fabrication, inspection, assembly, test and maintenance operations.
They do not define specifically how a particular machine tool will rough-cut and
finish-cut a part, or how a robot might assemble or disassemble an assembly.
The features and commands are machine-independent attributes of parts and
assemblies.

207

Enterprise Integration and Management Tool Resources

Each machine tool or robot has particular attributes (skills) like horsepower,
feed rates, spindle speeds and head or end-effector positioning and orientation
options and limits. Certain types of machines can perform certain operations or
combinations of operations. To minimize the impact of a machine failure or a
resource conflict that would require that a different machine or a combination of
machines be used, a factory must be adaptable.

To provide this adaptability, the machine programming process evolved the
following sequence.

Define the part geometry.
Define cutter or end-effector motion.
Define the machine parameters (feed, speed, coolant) for that motion.
Convert (postprocess) the motion and parameter instructions into a

language that a specific machine will understand (machine control
data - MCD).

Communicate the machine-dependent instructions to the designated
machine.

The first three steps are done by human resources using the APT (Automatically
Programmed Tool), Compact II or other machine programming language. The
conversion is done with a post-processor. The communication was done with
paper or mylar punched tape.

Most NC shops have replaced the paper and mylar tapes with Direct Numerical
Control (DNC) computers and networks. They distribute blocks of MCD to
Computer Numerical Control (CNC) computers, which feed the machine tools
MCD on demand, as if a new reel of tape were being mounted. This
improvement keeps MCD in digital form. It eliminates the need for tape
libraries. It eliminates tape reader acquisition and maintenance and the
machine inactivity associated with tape changes.

Computer Aided Manufacturing (CAM) systems have added graphics and some
automation to the first three steps. Graphic systems have made it easier to
define and visualize cutter motions. Some motions, like those required to
remove the material from a pocket, are automated once the drive and check
surfaces are defined by an NC programmer. The systems provide graphic
feedback of the cutter motion, but most motions and all the machine parameters
must be specified by an NC programmer.

Recently, solid modeling tools have not only made the interpretation of design
intent less ambiguous, but have also facilitated more powerful machine
programming tools (complex pockets) and more realistic renderings of the part
throughout the fabrication, inspection, assembly or test process. Although this
reduces machine programming time and makes it easier to detect errors, it is
still a tedious and error-prone manual process.

208

Enterprise Integration and Management Tool Resources

Some modelers are unintegrated with solid and surface modelers. Some
require that the solid be converted to surfaces for machining programming
purposes. This is an undesirable extra step in the process.

Complex surfaces can be difficult for a machine programming tool, especially if
many surfaces are involved. The machine programming tool should enforce the
topology rules of the model. It should not have to concern itself with surface
boundaries that are not tangent or coincident. The modeler should resolve
such situations.

Libraries of tools (drills, cutters), end-effectors (grips, drill and router motors,
spray heads), machine parameters (feed, speed, travel, reach, swing, degrees
of freedom), and fixtures whose attributes can be copied and inserted into
machine control programs, would facilitate the machine programming effort.
The library data should be presented with the part or assembly models and
fixtures on demand in a format conducive to good machine programming
(animation).

The assembly tool commands used during the design part of the product
development process should simplify the robot programming effort.

Most of the CAM systems generate a dense list of point-to-point moves that can
be input to the APT post-processor. Some CAM systems transfer machine
parameters as well. Unfortunately, some graphic systems only generate
machine-specific MCD. This is particularly true of printed circuit board drilling,
electrical component placement and robotic related systems. There is an effort
to rectify this situation so APT can be used for all machine tools to provide a
degree of machine independence for all operations.

6.10.4.8.6.14.3.2. Machine Program Verification Tool

Regardless of the manual programming tool used, programming errors are not
obvious. Hence, the need for an NC Verification tool. Until a generative
machine control tool is available, an end-effector motion (cutter path)
verification tool is required. This tool should use the part, tool, fixture and
machine geometry to simulate the machining process as specified by a
machine control program. It should indicate by way of color changes areas
where the material would be under- and over-cut, or fixtures (clamp) or the
machine (bed) would be damaged. The effect of tool wear and deflection and
machine characteristics (slop, inertia) should be included in the simulation to
eliminate any need for part program proofing on real machines.

6.10.4.8.6.14.3.3. Generative Machine Control Tool

Generative NC and Automated NC are common phrases used to describe the
automation of the process of strategizing material removal (milling). Its initial
focus was the automatic generation of material removal machine control
commands as a function of the geometry of the finished part and its attributes.
As used here, generative NC is not limited to conventional NC machine tools

209

Enterprise Integration and Management Tool Resources

(lathes, mills). It includes any manufacturing operation that is dependent on the
geometry of a part, like material handling, material removal, part inspection,
assembly and test.

Generative NC tools automatically infer from the part geometry the cutter or end-
effector motion and machine parameters necessary to optimize the material
removal process. A complete set of machine and operator instructions result
from the execution of the program. The instructions can be for a class of
machine resources or a specific machine. If they are generic, the format of the
instructions is usually in APT. This preserves the machine independence
provided by APT, allowing existing post-processors to be used to derive the
machine control data from the APT program. If they take advantage of machine-
specific features, the use of APT may only be a matter of convention. The
program must be run on the targeted machine.

Solid modelers make generative NC practical, because the geometry is
accurate and unambiguous. Cutter or end-effector motions that are only
meaningful at the feature level can be maintained with the appropriate features.

Human sight can be easily fooled. Objects which look perfectly correct on a
display may, in fact, have discontinuities. Discontinuities drive APT processors,
NC machines and robots crazy. For this reason, modelers that do not enforce
coincidence and tangency constraints, whose representations are faceted, or
which resort to polygons for some of their Boolean operations provide
unacceptable input data for generative NC tools.

A generative machine control program tool should automatically generate the
machine control program necessary to handle, fabricate or inspect a part or
assemble parts. The generative machine control program tool may be invoked
by the generative process planning tool to determine the feasibility of using one
or more machines for a particular process.

The machine cutter or end-effector control language generated by the machine
programming tool should generate source control language in a standard
language, like APT. Then it can be post-processed on demand for any of the
machines capable of performing the operations dictated by the program.
Modeler post-processors are undesirable.

210

Enterprise Integration and Management Human Resources

6.11. Human Resources

This discussion follows from the Current Trends in Business section of the
Introduction.

6.11.1. Manage Less

People tend naturally to be helpful and cooperative. They naturally seek the
best help available. When they are busy, they will not accept responsibility for
additional work They abide by their prior commitments. When they over-
commit themselves or the unexpected happens, they work extra hours.

In unenlightened businesses, people are constrained from cooperating with
one another by the requirement to first check with the boss ... who will not be in
until next week ... who must check with his boss The impediment to highly
productive teams (aka concurrent engineering) is management.

In an enlightened business there is nothing for middle management to do. They
return to front-line management roles, or to the technical jobs they would not
have left were it not for the money, or move to entirely new jobs. That nagging
feeling that they are just messengers and not really contributing to the business
process is replaced by a true sense of purpose and job satisfaction.

Supervisors really cannot be effective unless they know enough about the
technology employed by their function to converse intelligently with the people
in their employee. They must also know enough about the business of their
customer to converse with their customers intelligently. Total all the
administrative and police duties that have become the responsibility of a
supervisor and it becomes apparent why good supervisors are a rare breed.

Their secretaries are often frustrated by the need to have the supervisor sign a
document before even trivial actions can be undertaken. Many supervisors
have encouraged their secretaries to forge their signatures on certain
documents, or with verbal authorization to sign any document.

The technical and administrative duties of a traditional supervisor are not only
overwhelming, but also represent a mental schism. Few people are inclined or
capable of performing both technical and administrative jobs. Both are or very
nearly are full time jobs, so why not split an impossible along different lines?

Supervisors and secretaries should be replaced with technical lead and
administrative assistant teams. The technical lead would be "in charge." The
administrative assistant would have signature authority on all non-technical
documents. Their pay should be based solely on merit. In a smoothly running
office, one administrative assistant may be able to support two or more technical
leads. With the freedom to work when there is work and not to work when there
is not, peak work load conditions can be accommodated without additional
personnel.

211

Enterprise Integration and Management Human Resources

The following table lists many of the tasks currently assigned to supervisors. A
check in one or more of the three columns entitled "TECHNICAL LEAD,"
"ADMINISTRATIVE ASSISTANT" and "EMPLOYEE" denotes a task appropriate
for that role.

TASK TECHNICAL ADMINISTRATIVE
LEAD ASSISTANT EMPLOYEE COMPUTER

Identify problems x
Define requirements x
Distill solution x
Plan product x
Plan business x
Define tasks x
Allocate work x
Track Work x x
Counsel technically x
Counsel personally x x
Market products and services x
Establish vision x x
Educate about process x
Provide retirement info./status x
Provide medical plan information x
Provide insurance information x
Distribute mail x
Establish labor account x
Authenticate labor account x
Educate about labor accounting x
Record labor x
Schedule vacation x
Authorize vacation x
Track vacation x x
Track sick leave x x
Track actuals versus budget x
Provide pro/demote evidence x x
Provide pro/demote forms x
Provide merit in/decease evidence x x
Provide merit in/decease forms x
Provide termination evidence x x
Provide termination forms x
Select candidates x x
Schedule candidates x
Complete hire forms x
Relocate personnel x
Move or repair facilities x
Provide supplies x
Plan career x
Rotate jobs x
Provide security briefing x
Provide ethics briefing x

Although this would be a step in the right direction, the role of front-line
management should shift from that of a supervisor or foreman (nursemaid and
police officer) to that of a
• facilitator of discussion within a team,
• coordinator among teams and

212

Enterprise Integration and Management Human Resources

• seeker of new methods and technology for the team to consider making
part of their role in the business process.

The team leader leads by way of the Socratic Method: by asking the right
questions of the right people at the right time. The team leadership role may
rotate among team members. The administrative assistant is just another
member of the team. When other team members need a change of pace, they
may perform some of the duties of the administrative assistant or other team
members.

Top management continues to seek business opportunities and financing, and
collect market and competitive information. Instead of limiting that information to
strategy meetings with a few top level managers, it is shared with the entire
work force. Top management works with the employees to establish a common
vision for the business, a strategy for its realization and the incentives to
motivate the employees and management to achieve that vision. Top
management also works with the employees to establish measures of success
for each work cell and individual. The measures should help identify the
incentives that will motivate them to contribute to the overall success of the
enterprise. Gone are counter-productive micro management, micro accounting
and micro reporting practices. (Recommend reading: "Managing without Managers"
article in September-October 1989 Harvard Business Review by Richard Semler, from his book
entitled "Turning the Tables.")

For authoritarian business to be competitive in the new business environment,
they must evolve quickly and radically. Here are some recommendations.

6.11.2. Un-Organize

Consider all employees, computers, machines and facilities to be one large
resource pool. They all have skills. No two employees and few computers and
machines have exactly the same skills or the same proficiency in a particular
skill. Specific skills or skill sets are required to perform specific work or sets of
work.

Program managers, project managers, cognizant engineers and responsible
engineers are human resource consumers. Individual engineers consume all
other resource types.

Other than by way of who knows who or what in an organization, there is no
way for someone to find needed resources. Many skills are not utilized,
because qualified resources or their skills are unknown to the consumers. A
Resource Manager tool as described in the Tool Resources section would help
resource consumers be cognizant of available skills, aid in the allocation of
those skills and help reconcile resource conflicts as work is scheduled or
schedules change.

It is possible to require the Human Resources Department to update a
Resource Manager database as employees hire or terminate or gain skills or
proficiency. It is possible to require the Industrial Engineering Department to

213

Enterprise Integration and Management Human Resources

update a resources database as machines are acquired, sold, upgraded or
degrade. It is possible to require the Information Resource Management
Department to update a resources database as computers are acquired, sold or
upgraded, they are not inherently motivated to do so. It would be an onerous
task to maintain all of this information in a database for resource consumers to
access. Inaccurate or untimely information could adversely affect a human
resource, and result in a lawsuit.

A Resource Manager is appropriate for authoritarian businesses. However, it
can also be a tool for libertarian businesses when it is used by the resources to
market their skills and make them aware of opportunities. In this case the
Resource Manager that is more like an electronic bulletin board. If someone
wants work performed, let them describe the deliverable, skills, proficiency and
due date to it. Let the human resources describe their skills and the skills of
their tools to the Resource Manager. Let the Resource Manager identify
possible matches between the work and the resources. Let the resources bid
for the work. Let the resource consumers contract with the resources.

The Resource Manager would be like a work broker and personnel broker
combined. There is no need to require anyone to maintain the data known to
the Resource Manager. The maintenance of accurate data is the vested interest
of all the participants.

If many resources bid for the work, the competition may force the price down. If
few apply for the job, the price may be forced to increase. If none apply, or the
price is too high, the project manager may degrade the proficiency
requirements, allow a combination of resources to perform the work. If time
permits, seek resources from outside the enterprise … by way of the Resource
Managers of subcontractors.

Human resources should have the freedom and responsibility to acquire skills
or improve their proficiency in the skills that are the most demanded or
interesting. They should have the freedom to acquire (buy, lease, rent) tools
(machines, computers, software) that will make them more proficient or
effectively give them new skills. They should be free to team and subcontract
the work, and share the cost and benefit of tools. They should be free to
generalize their skills to be qualified to perform a lot of different work. They
should be free to specialize to increase their value for a specific kind of work.

Some human resources may create work for themselves or demand a higher
price by inventing new capabilities or procedures that improve the business
process. To encourage innovation, enterprise "patents" should be issued and
protected by the enterprise, or issued as a contract between a human resource
and all other human resources. Then it can be protected by way of private or
public civil courts. These may eventually become national or international
patents. All patents can be bought, sold or leased (royalty payments).

Similarly, resource consumers should be free to pay a higher price for the skills
of resources that are known to be reliable and who accurately represent their

214

Enterprise Integration and Management Human Resources

proficiency. resource consumers should be free to take a chance on an
unknown resource to lower costs. However, wise project managers will only do
so when there is sufficient slack time in the schedule to permit recovery from a
bad choice.

Resource consumers are also human resources. They have a certain skill set
and inclination. They too should be free to bid for work and acquire tools. They
may share their experience with other resource consumers, which may cause
the proficiency rating of certain skills of a resource to change or become less
credible. They may buy proficiency ratings from those who specialize in that
service. This is a likely job for those who were functional managers. They may
also be funded by groups of project managers to add or improve scarce skills.
Resource consumers may team with other project managers in retain idled
resources in anticipation of their need at some future date or to keep their better
resources from working for their competition.

At the discretion of the human resources, enterprise management may
advertise for work to improve the appearance, health, safety or functionality of
enterprise-owned facilities. Groups of human resources may advertise for and
pay someone to acquire new tools that can be shared (leased or rented) by
many human resources. Some human resources may specialize in acquiring
new tools for lease or rent to other human resources. Some may specialize in
the maintenance of information resources (communication networks, mainframe
computers) and charge for their use. Others may specialize as effective team
leaders or administrative assistants.

6.11.3. Toss the Time Clock

With human resources being paid by the subtask or "by the piece" instead of by
the hour, there is no justification for time clocks or set working hours. Empower
the human resources to communicate how, when and where they want to get
their jobs done most efficiently.

6.11.4. Flatten and Divide

Collapse the management hierarchy into two levels: Manager and team
leaders. If the number of team leaders is appropriate for the number of human
resources and there are too many team leaders or members in one
organization for effective communication, then divide the organization into
separate profit centers with separate managers.

6.11.5. Reallocate

How do machines, fixtures and machine tools bid for work? Sell, lease or rent
all non-human resources (tool cribs and tools, stockrooms and inventory, fixtures,
computers, furniture, research, design, analysis, material handling, fabrication, inspection,
assembly and test equipment) to the highest bidder among the human resources.
The human resources will naturally acquire only those resources that cost-
effectively improve their productivity, and hence their competitiveness. The
human resources will use their resources to acquire more work or acquire more

215

Enterprise Integration and Management Human Resources

dollars per hour for their work, or both. Those resources that are not acquired
should be sold to outside interests. Else they waste floor space which could
otherwise generate income for the enterprise.

Allocate discretionary funding for the enterprise beyond management to each
human resource. Let them improve their productivity by acquiring new tools,
fixing old tools, improving their working environment or whatever. If someone
believes that something beyond their means would significantly benefit the
enterprise, they can lobby others and convince them to pool their discretionary
funding to acquire more expensive items or services.

To give the human resources the option not to spend funds allocated to them
annually, make them accountable for the best return on those funds. Allow the
funds to be invested in an interest-earning account. Allow the funds to cumulate
over multiple years. If the human resource thinks a greater return can be had by
investing the funds in the enterprise, then that risk should be taken. Else the
funds earn the expected interest rate. The human resources that consistently
earn a higher return on their investment relative to the investments of other
human resources will be able to demand a higher pay rate and/or attract more
investment funds.

6.11.6. Privatize

The enterprise with the better location and facility will attract the better human
resources. Medical, child care and pension benefits may also be used to attract
human resources, but pension benefits may tend to attract the less innovative or
adaptive human resources.

If an enterprise wants to attract the most innovative and adaptive human
resources, and avoid the cost of being an employer, like the cost of managing
pension funds and medical plans and paying social taxes, it should convert its
human resources into subcontractors. It should help individuals or groups of
human resources establish themselves as independent businesses with a
name of their choosing. The parent enterprise can help the sibling businesses
find health, life and disability insurance, financial resources and investment
plans individually or as a group.

The parent enterprise can become a Mall of Subcontractor: a building full of
tenant sibling businesses. Let the siblings mark their floor space and erect
business signs and offices. Let them bid higher rents for the better parking
spaces. Their costs thereby shift from overhead to direct. The incentive of
having their own business will increase their productivity.

Rent, lease or donate two personal computers or workstations to the sibling
businesses. Put all the business software (electronic mail, accounting, billing, payroll,
taxes, telephone answering/messaging/broadcast) they need to conduct a small
business competitively on one computer. Put all the software they need to run
their tools (structural, electrical or software design, documentation, analysis, manufacturing) on
the other. Connect the computers together so one can be the back-up for the

216

Enterprise Integration and Management Human Resources

other. Connect the computers to the enterprise subcontractor computer network
or an internal network for access to work requirements (Resource Manager) and
for coordination with others. Allow them to connect to other networks of their
choosing as well.

Bill the sibling businesses for the use of the floor space (including allocated fire
and liability insurance), utilities (electricity, heating, air conditioning, telephone)
and toilet facilities. Let them worry about their own materials, material handling,
fixtures, tools, machine maintenance, telephone answering service, theft
protection and clerical help. Let sibling businesses or external companies
compete to provide such commodities and services.

If some of the sibling enterprises fail to compete, then other sibling enterprises
or external enterprises may bid for their assets and floor space, and perhaps
hire the less entrepreneurial human resources.

If unused floor space exists, allow any sibling enterprise or outside enterprise to
bid for the floor space. Let them install additional machines of their own. If the
parent enterprise has insufficient work to occupy a sibling enterprise fully, let it
seek work from outside the parent enterprise.

Malls can be as large as the facility permits, but they should not be
geographically distributed. Separate facilities should be separate Malls.
Individual buildings can be Malls. The Malls should remain open 24 hours a
day, 7 days a week.

This approach is not limited to manufacturing enterprises. It can be applied to
engineering enterprises, or any enterprise for that matter. Some companies are
both. With the separate contracts for design and manufacturing becoming the
norm, it may make sense to make Engineering and Manufacturing (Operations)
separate cost centers even if they are in the same facility.

Pay per deliverable, not per hour. This should hold true for deliverables among
functions in the process (sibling enterprises and subcontractors) as well as for
deliverables to the parent enterprise (system integrator).

Those managers who do not participate in the sibling enterprises may become
Mall managers. The number of personnel involved in the administration of the
Malls must be minimized if the Malls are to be competitive. Very low rents are
required to improve the odds that the sibling companies will survive their
formative years. Many of the manufacturing managers and human resources
may be employed by the engineering sibling companies to help them make
their designs more producible.

The parent enterprise should qualify the process of the sibling enterprises as
the parent enterprise would qualify that of any subcontractor or supplier.

217

Enterprise Integration and Management Human Resources

6.11.7. Communicate

The parent enterprise should use a computer network to interact with all sibling
companies and outside suppliers, subcontractors and associates, so work
requirements need only be placed on one bulletin board (Resource Manger) for
all to see. This will make the transition from an enterprise work bulletin board to
an international work bulletin board easier.

Companies like General Electric Information Services (GEIS) may expand
beyond international electronic mail exchanges among "incompatible"
enterprise electronic mail systems into work brokerages. Companies that need
work performed will subscribe to such an exchange to broadcast work
requirements world-wide to get the best price, quality and response possible.
Companies that want work will subscribe to receive such information and
respond via their electronic mail system. Not to subscribe will be to go out of
business.

This electronic information exchange service could include all kinds of data
(requirements, specifications, graphical and geometric data and machine
motion data) as attachments to messages. It could perform data format and
language conversions from that of the sender system to the that of receiver "on
the fly." Such a system would support not only product development and
manufacturing, but also product support (CALS). Eventually the parent
enterprise will be using such a service from all the possible perspectives (prime
contractor, subcontractor, associate producer, partner, buyer, seller...).

A similar service will be available to help businesses find and acquire existing
parts (Information Integration section), including their specifications and
geometric models for direct inclusion in designs before their acquisition. It will
become the "one stop shopping center" for parts. For a manufacturer not to
advertise its parts on the "parts bulletin board" would mean certain business
failure. This will insure that all available parts are on the bulletin board.

6.11.8. Disperse

Use the communication network to allow the sibling enterprises to disperse to
their home or whatever location is most amenable to their productivity. Clerical,
engineering and non-polluting fabrication sibling enterprises can be conducted
within private residences. This will avoid the pollution, auto and highway wear,
traffic congestion and time lost commuting. It will save petroleum and other
resources. It will make the parent enterprise a "good neighbor" in its
community. Given the freedom to work where and when they want will
maximize the productivity of human resources and the effective use of all other
resources.

Use the communication network as an international work brokerage. Expand
the request for bid and bid work/resource matching process into a world-wide
activity.

218

Enterprise Integration and Management Human Resources

6.11.9. Start

Such radical changes will take time. Until then, some relatively easy changes
can be made to begin the process of change.

Eliminate all privileged parking (supervision, employee of the month...).

Eliminate the executive dining room or convert it into a Total Quality
Management (TQM) educational center.

Eliminate the correlation of office size or location to management position. As
facilities are modified, replace closed offices with standard low partition
"cubicle" work spaces.

Disassociate position from apparel. Encourage comfortable, functional and
safe clothing.

Until each employee becomes a contractor, equate cost to demand. As soon as
the demand for a resource surpasses an average of 40 hours per week for
human resources, increase the cost of that resource. Temporarily increase their
pay accordingly. The increased cost will reduce demand and protect valuable
resources from over use (burn-out). Long term demand trends will indicate
when the base pay of a human resource should be increased to retain the
resource, and when the base pay is unjustifiably high.

The allowable average for hours per week for machines, computers, facilities
and other resources would depend on the resource. Use the excess funds
derived from the higher rates to acquire additional temporary or permanent
resources. Do the reverse if the demand falls below optimum levels.

6.11.10. Change

Keep changing for the better. Not to improve continuously is to be destined for
oblivion.

219

Enterprise Integration and Management Machine Resources

6.12. Machine Resources

Machines are large and small, heavy and light, fragile and tough. They may
move material (conveyers, robots),
cut material (saw, water jet, laser),
shape material (mill, turn, mold, electro-erode, etch),
add material (paint, glue, weld, wave solder, electro-deposit),
measure material (acoustic, optical or laser range finders, load cells
assemble material (composite lay-up) or parts (inserters, robots) or
test systems (bed-of-nails circuit board testers, volt/ohm meters).

Some perform a combination of these functions. The key attributes of machines
are their modes of control, set-up and their adaptability.

The function of many machines can be controlled by computing resources or
paper or mylar tapes. These can be replaced with computer-based controllers.
However, other computer controlled or human controlled machines or human
resources are usually required to

move material or parts to and from the machine,
install jigs and tools on the machine and
secure to and remove from the working surface of the machine the

material or parts that are to be operated upon (fabricated,
inspected, assembled, disassembled, tested or delivered) by the
machine.

Combinations of machines may be co-located into cells and coordinated by a
combination of computing and human resources.

Both controlling resources require instructions. The human resources require
their instructions in audio and/or visual form. Time is required for the human
resources to understand the instructions. The computing resources require a
set of specially formatted, digitally encoded instructions for which virtually no
learning or transmission time is required.

Human resources are expensive and sometimes unavailable, unreliable
(breaks, sickness) and inconsistent (mood, physical condition). They are
inventive, dexterous and adaptive. They are better suited for creative and non-
repetitive tasks. They can interpret incomplete or ambiguous instructions. The
time required to create instructions for human resources is small compared with
the time required to program computing resources.

Computing resources must have complete and unambiguous instructions.
However, computing resources are relatively inexpensive, available and
reliable. Their behavior is consistent. Hence, repetitive or at least predictable
tasks are more appropriate for computing resources. Therefore, machines that
are employed doing repetitive tasks should be computer controlled. Machines
that are employed doing creative tasks or which must adapt quickly should be
human controlled.

Regardless of whether a computer or human resource controls a machine, that
part of the business process which is dependent on the machine must stop and

220

Enterprise Integration and Management Machine Resources

wait for the resource to be alerted to the need for action. It must understand the
action that is to be performed, act and finally complete the action before the
process can continue. Computing resource can do it much faster than a human
resource. Consequently, the more machines that are computer controlled, the
more automated, timely and predictable the engineering and manufacturing
process can be made.

Machines can be much more expensive than the computer or human resources
that control them. Some combination of the productivity or the quality of work, or
the longevity of a machine must justify its expense. Otherwise a combination of
human resources and tools is likely the more appropriate alternative.

221

Enterprise Integration and Management Facility Resources

6.13. Facility Resources

Facility resources are those which house, support, energize, cleanse, cool, heat
and light the other resources. Facilities resources include land, buildings,
utilities, sewers, fire protection and the like. Some of the less obvious attributes
of good facilities are listed here.

6.13.1. Air Conditioning

The temperature, humidity, particulate and chemical contamination of the air
supplied to resources must be within the limits tolerable to them. Given the
diversity of such requirements, some resources must be physically isolated.
They must be provided with filters, different sources of air or additional air
conditioning.

6.13.2. Lighting

Although fluorescent lighting is less expensive than incandescent lighting when
left on for extended periods, some incandescent or ambient lighting is required
to avoid injury. Some people have grabbed rotating parts in lathes and cutters
in mills, because machines rotating at 60 cycles per second appear to be
motionless when illuminated with only fluorescent light. Light sources should
be easily moved to promote the mobility of the resources that are dependent on
the light.

6.13.3. Protection

Protection from natural elements (rain, wind, sun) is required for many
resources. Physical access constraints are necessary to prevent resource,
personal property and information theft or damage. Visual access constraints
are required to prevent information theft. Electromagnetic transmissions must
be contained to prevent information theft (see Computing Resources section).
Electromagnetic interference constraints are required to prevent a disruption of
certain resources, especially communication resources. Depending on the
frequency and intensity, internally (machines) or externally (jet aircraft)
generated sound can be disruptive to computer, tool and machine as well
ashuman resources.

6.13.4. Space

If a resource is to be contained within an enclosure, a volume of space that will
accommodate it and its installation and access requirements is required.
Ingress and egress volumes (minimum cross section times turn length) must
accommodate the largest resource anticipated, except those that are expected
to be disassembled for movement. Special consideration must be given to the
safe egress of human resources, particularly those with motive constraints.
Partitions should be moveable. Large portals (double doors, freight elevators)
or alternate portals (removeable exterior walls or roof sections) should exist to
accommodate large resources.

222

Enterprise Integration and Management Facility Resources

6.13.5. Stability

A foundation must be sufficiently rigid and stable to be a platform for resources
that are sensitive to movement or alignment. For example, computer disk drives
can tolerate little motion, especially abrupt motion like shock. Upper floors are
often so flexible that a heavy person walking on one part of the floor can cause
enough vibration on remote parts of the floor to cause disk drive heads to
contact their rotating media, destroying disks. One solution is to analyze the
structural dynamics of the floor and relocate the vibration-sensitive resources to
more stable node points.

Large gantry milling machines do not have enough rigidity in their frames to
maintain machining accuracy if the foundation warps. Foundation warping can
be caused by changes in hydraulic pressure in the soil under the foundation,
which can be caused by ocean tides or seasonal rain. One solution is to
replace the foundation under such machines with large-reinforced, autonomous
footings.

Earthquakes can induce motion in all floors of a building. Foundations isolated
from earth can dampen building movement and minimize structural and
resource damage.

6.13.6. Supplies

A means of supplying oxygen for combustion and respiration must be provided.
Natural gas, petroleum and food must be supplied for conversion to energy. Oil
and water must be supplied for lubrication, cooling and waste removal. Water
must be supplied for hydration. Electrical power not generated internally must
be supplied externally. Electrical and optical conduits must be provided for
internal and external digital and analog data, voice, sound and video
communications. The sources for these supplies or their conduits must be
mobile if the resources dependent on them are to be readily moved to allow the
enterprise to adapt to new business drivers quickly.

6.13.7. Waste

The sewage of human resources, material waste of material removal machines,
chemical waste of integrated circuit and circuit board fabrication and the heat
generated by all the resources that is not recycled must be removed. Due to
building code restrictions, waste conduits tend to be the most difficult or
expensive to move. They tend to immobilize the resources that require them.

Depending on the size of an enterprise and the proximity of its resources, the
waste products of some resources may useful to other resources or the process
in which they are involved. For example, furnace and autoclave waste heat
may be used to remove the chill from the space of human resources.

223

Enterprise Integration and Management Index

7. INDEX

2-D model 60, 201
3-D model 60, 174, 201
A Tool Interface Standard 124, 145, 150
ABS 56, 58, 59, 204
ADA 141
Address Resolution Protocol 84
ADU 78
aerodynamic 171, 198, 199, 227
AIS 124, 185, 186
American National Standards Institute 79
ANSI Y14.26.3 201
ANSI Y14.5 201
AppleTalk 80, 81
Application 73
Application Layer 75
Applications Interface Specification 185
architecture 73
ARP 84
arrangement 27, 36, 44, 55, 169, 170, 171, 173, 184, 186, 189, 190, 191, 193,
198
Article 163
as-designed 57
as-planned 57
ASCII 82
Assembly Breakdown Structure 27, 36, 60, 156, 160, 193, 194
Assembly Simulation 192
Asynchronous Data Unit 78
ATIS 124, 128, 133, 145, 150, 152, 186
B-rep 54
backbone 73, 76, 77, 78, 79
backplane 20, 125, 126, 142, 228
Baseband 79
baseline configuration 25, 26, 28, 29, 30
BIT 9, 13
boundary element 26, 53, 130, 177, 178, 181, 182, 186, 191, 192, 205
boundary representation 54, 176, 177, 178, 180, 182, 185
bridge 76, 77, 78, 80, 81
broadband 76, 78, 79
BSD 83
Built-In Test 9, 13
Business Drivers 7, 9, 19, 223
business process 1, 9, 18, 19, 21, 22, 23, 34, 36, 38, 69, 76, 88, 119, 144, 146,
148, 151, 211, 213, 214, 220
C++ 136, 139, 140
CAD 9, 12, 13, 15, 16, 109, 127, 130, 138, 167, 202, 227

224

Enterprise Integration and Management Index

CALS 8, 9, 15, 16, 76, 122, 124, 128, 218
CAM 12, 15, 109, 185, 208, 209, 227
CASE 124, 128, 150
CATV 78, 79
CBS 26, 28, 37, 59, 188, 204
change control 3, 31, 160, 161, 189
classified 92, 93, 94
client/server 72
CLOS 141
cognizant engineer 39, 154, 155, 156, 159, 213
Component Breakdown Structure 26, 36
Computer Aided .i.Logistics 8
Computer Aided Analysis 120
Computer Aided Design 104, 120, 199
Computer Aided Drafting 120
Computer Aided Engineering 120, 124
Computer Aided Manufacturing 208
Computer Aided Software Engineering 118, 142, 149, 169
Computer-Aided Design 9, 12, 227
computing resource 20, 50, 64, 69, 70, 71, 74, 75, 86, 87, 88, 89, 90, 91, 92, 95,
123, 125, 126, 131, 143, 145, 172, 220, 221
computing resources 70
Concurrent Design Environment 124, 128
Concurrent Engineering 9, 17, 19, 23, 29, 34, 56, 93, 211
Configuration Control 9, 13, 14, 162
configuration management 14, 31, 63, 97, 124, 125, 142, 149, 151, 160, 161,
163
Connection features 26
constructive solid geometry 54, 176
cost 4, 8, 9, 10, 12, 21, 23, 26, 27, 31, 34, 38, 40, 47, 61, 64, 65, 66, 67, 68, 69,
71, 73, 74, 75, 76, 86, 87, 88, 89, 90, 91, 95, 97, 111, 113, 120, 123, 124, 126,
129, 131, 134, 137, 142, 148, 149, 152, 154, 157, 158, 159, 167, 169, 172, 190,
191, 192, 193, 194, 195, 200, 201, 204, 214, 215, 216, 217, 219
cost-plus 17
CSG 54, 176, 178, 180, 182
data manage 3, 73, 75, 90, 97, 98, 99, 119, 123, 126, 128, 130, 136, 150, 152,
172, 227
Datagram Protocol 84
Datalink 73, 74
Datalink Layer 74
DDCMP 74, 84
Define Requirements 25, 212
deliverable 40
deliverables 7, 24, 25, 26, 36, 41, 42, 43, 45, 47, 48, 60, 62, 63, 66, 67, 69, 117,
155, 156, 157, 160, 161, 192, 217
Department of Defense 9, 17, 37
Derivative 60, 61, 63, 96, 97, 155, 156, 159, 160, 161, 172
Design Analysis 9, 11, 15
Design for Testing 9, 13

225

Enterprise Integration and Management Index

Design Policy 9, 10
Design Process 9, 10, 11, 12, 15, 108, 189, 198
Design Requirements 9, 10
Design Review 9, 11, 14, 15, 33
design rules checking 187, 194, 195, 196
Design Validation 192
Digital Data Service 76
DNA 73, 77
DoD 7, 8, 9, 10, 15, 16, 37, 122, 201
drawing 3, 14, 112, 113, 114, 120, 136, 151, 153, 174, 178, 183, 194, 201, 202
economy of scale 6
EDI 76, 120
EIFFEL 141
Electronic Data Interchange 120
Electronic Document Interchange 76
Electronic mail 151
electronic mockup 27, 41, 192
employee empowerment 23
encapsulate 114, 128, 129, 132, 133, 135, 150, 157
encapsulation 97, 128, 129, 135, 157
End Item 57, 161, 163
Ethernet 74, 77, 78, 79, 80, 81, 83, 84
EtherTalk 80
Event 58, 162, 163
Facilities Resource 22, 65, 222
facility resources 19, 64, 65, 69, 74, 222
FBS 25, 26, 30, 36, 37, 43, 45, 46, 47, 58, 59
feature 26, 27, 28, 30, 54, 93, 105, 114, 128, 130, 160, 163, 167, 172, 178, 180,
181, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 197, 198,
203, 204, 205, 206, 207, 210
fiberoptic 27, 74, 76, 79
file control 96, 97, 227
File Transfer Protocol 84
Finite element analysis 197
Finite element modeling 197, 199
fixed-price 17
fixture design 17, 34, 204, 205, 206, 207
fixtures 146, 148, 170, 188, 192, 204, 205, 206, 209, 215, 217
FLAVORS 141
framework 20, 22, 90, 119, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 142, 146, 150, 153
FTP 84
Function Breakdown Structure 25, 36
gateway 76, 77, 78, 80, 81, 85
generative fixture design 206
generative machine control 209, 210
generative mold design 207
generative NC 179, 206, 207, 209, 210
generative process planning 180, 185, 200, 202, 203, 204, 205, 206, 207, 210

226

Enterprise Integration and Management Index

generative tool design 206
Generic Process 19, 23, 38
Geometric modeling 54
granularity 23, 120, 130, 135, 142, 202
Graphic Feedback 153, 180, 208
HDLC 74, 84
human resources 2, 19, 21, 64, 65, 66, 67, 69, 70, 71, 72, 74, 117, 118, 119,
121, 126, 127, 143, 146, 148, 153, 156, 197, 201, 211, 213, 214, 215, 216, 217,
218, 219, 220, 221, 222, 223
Hyperchannel 79
Hyperknowledge 136
ICMP 84
IEEE 802.3 77, 78
IEEE 802.5 78
IGES 122, 202
Individual engineer 2, 39, 155, 156, 213
information hiding 17
information integration 1, 19, 20, 36, 66
Initial Graphics Exchange Specification 120, 186, 202
Integrated .i.Logistics 3
Integrated Project Support Environment 124
Integrated Systems Digital Network 78
interference check 175, 191
International Standards Organization 73
Internet Control Message Protocol 84
IPSE 124, 125
ISDN 78
ISNA 73
ISO 73, 127
Just-In-Time 56
LAN 76, 77, 78, 81, 82, 109, 158
LISP 101, 138, 141
Local Area Network 76, 158
Local Area Networks 76
LocalTalk 77, 78, 79, 80
Logistics 9, 11, 13, 15, 16, 122
LSA 15, 16
machine 19, 20, 21, 22, 27, 29, 35, 64, 65, 71, 81, 86, 117, 126, 143, 146, 220,
221, 222, 223
machine instruction 147, 206, 207
Machine Program Verification 209
machine programming 185, 207, 208, 209, 210
machine tools 64, 147, 208, 209, 215
maintainability 4, 16, 17, 27, 32, 34, 160, 173, 193, 194, 199, 200
manifestation 15, 26, 41, 48, 61, 155, 156, 172
Manufacturing Automation Protocol/Technical Office Protocol 73
MAP/TOP 73
mass properties 175, 197, 199
Master Dimensions 171

227

Enterprise Integration and Management Index

master/slave 72
Materials Selection 9, 11, 165
Matrix management 2
mesh generator 197
milestone 38, 154
mold design 207
multimedia 88
NC Verification 209
Network Architecture 73, 75, 77
Network Layer 75, 78
Network, 73
neutral format 120, 122
Object C 140
Object-oriented 98, 99, 100, 111, 136, 137, 138, 139, 140, 141, 150
Open Software Foundation 127
Open Systems Interconnect 73
OSF 90, 127, 128
OSI 73, 74, 77, 78, 79, 82
Package 27, 38
packaging 27, 29, 47, 50, 142
part attribute 50, 57, 167, 168, 187
part attributes 50
part instance attribute 51, 58
Part Selection 167, 187, 188
parts nesting 205
PBX 78, 82
PDES 17, 122
peer-to-peer 72
PHIGS 112, 113, 136
Physical 74, 77
physical location 62, 127, 164
Physical, 73
Portable Operating System Interface for Computer Environments 88
POSIX 88, 90, 132
Presentation 73
Presentation Graphics 151
Presentation Layer 75
Price 7, 66, 67, 132, 134, 148, 168, 214
Process Manager 128, 129, 146, 153, 155, 156, 157, 158, 159, 160, 164, 196,
199, 202
producibility 4, 9, 10, 11, 12, 14, 17, 27, 34, 160, 173, 192, 193, 194, 200, 204
Product Data Manager 128, 129, 146, 157, 160, 161, 162, 194
product management 19
Product Manager 157, 158, 159
profit center 6, 215
Program manager 2, 3, 4, 39, 154, 158
Program managers 213
Programmers' Hierarchical Interactive Graphic Standard 136
project manager 24, 39, 152, 154, 155, 213, 214, 215, 227

228

Enterprise Integration and Management Index

Quality Assurance 3, 14
RAM 16, 87, 199
Release 9, 12, 14, 21, 31, 32, 56, 97, 105, 131, 135, 148, 149, 207
reliability 4, 8, 9, 12, 17, 30, 34, 78, 160, 173, 192, 193, 199
requirements definition 10, 136, 144, 165
Resource Manager 67, 146, 155, 156, 158, 164, 200, 213, 214
responsible engineer 39, 155, 156, 196, 213
router 76, 78, 80
RPC 84
SBS 26, 30, 36, 37, 46, 47, 48, 49, 50, 51, 58, 59, 200
schedule 2, 4, 7, 12, 14, 17, 24, 28, 30, 34, 35, 40, 42, 69, 86, 153, 154, 155,
156, 157, 158, 159, 164, 192, 193, 196, 204, 213, 215
secret 92, 94
security 3, 72, 74, 79, 82, 86, 92, 93, 94
Session 73
Session Layer 75
SGML 122
Simple Mail Transfer Protocol 84
Simultaneous Engineering 9
Smalltalk 138, 139, 140
SMTP 84
SNA 73, 77, 78
Software Design 9, 12, 132, 149, 169
Solid Model 1, 20, 26, 53, 127, 130, 135, 161, 167, 170, 172, 173, 175, 176,
178, 179, 183, 184, 185, 186, 187, 188, 189, 190, 193, 194, 197, 198, 201, 204,
210
spatial relationship 56, 191, 204
spreadsheet 88, 98, 151, 172
Standard Generalized Markup Language 122
STEP 122
subcontractor 2, 6, 10, 13, 14, 15, 19, 35, 76, 131, 158, 159, 164, 214, 216, 217,
218, 227
synthetic part 41, 56
System Breakdown Structure 26, 36, 162, 190
Systems Network Architecture 73
Task Breakdown Structure 24, 36, 68, 146, 153, 156, 157, 164, 196, 202
TBS 24, 28, 29, 30, 36, 37, 40, 42, 43, 62, 153, 154, 158, 204
TCP 83, 84
TCP/IP 77, 78, 83
technical manual 9, 15, 16
TELNET 84
Token Ring 78, 79, 81
tolerance 11, 12, 27, 28, 29, 54, 178, 179, 182, 183, 186, 188, 190, 191, 195,
204, 205, 206
Tool design 12, 17, 34, 153, 205, 206
Tool resource 64, 117, 142, 143, 213
topology 175, 176, 177, 178, 185, 209
Total Quality Management 9, 17, 219
TQM 9, 17, 219

229

Enterprise Integration and Management Index

Trade Studies 9, 10, 11, 13, 160, 194
Transmission Control Protocol 83
Transport Layer 75
Transport, 73
Trellis/Owl 139, 140, 141
UDP 84
Unix 83, 84, 85, 88, 90, 109, 110, 118, 124, 131, 132, 134
Value Added Network 76
VAN 76
variant process planning 202
Voice mail 152
WAN 76
wide area 76, 127
wideband 76
Willoughby Templates 8, 9, 15
word processor 120, 151
Work Broker 158, 159, 214, 218
workpackage 38, 39, 41, 42, 154, 155, 156, 157, 158, 159
workstations 12, 76, 77, 81, 82, 86, 88, 92, 102, 114, 172, 216

230

Enterprise Integration and Management Acknowledgements

8. ACKNOWLEDGEMENTS

It is impossible to acknowledge everyone who contributed to the 26 years of
diverse civil, aerospace and commercial industry experience and knowledge
that has been distilled into this book. What was learned from publications and
reports was small compared to what was learned personally or learned from the
successes and failures of myself, friends, business associates and affiliates.
Any sources not specifically mentioned have faded into the oblivion of a
memory that was concerned with solving problems rather than writing a book.
Where memory served, the source of a concept is credited in the section or
paragraph that describes the concept. My apologies to those who inadvertently
did not receive recognition they deserve. Please contact me so you can be
appropriately acknowledged in the next edition.

231

Enterprise Integration and Management About the Author

9. ABOUT THE AUTHOR

As a stock boy, deliveryman, draftsman (Air Force Civil Engineering, Rocketdyne), and
designer (NASA, Fight Operations and Advanced Design, Edwards), he earned his way
through college. He received a Bachelor of Science degree with honors in
Aeronautical Engineering from California State Polytechnic University in 1971,
where a degree of proficiency in all the basic manufacturing methods was
required. He delayed his career for three months while he was the
"transportations systems engineer" for National Science Foundation
interdisciplinary team (GY-9159). After one year of basic aerodynamics work
(Rockwell International, B-1 Division), he began to seek computer solutions to manual
wind tunnel data reduction and display methods. That earned him a job doing
advanced aerodynamics (Los Angeles Aircraft Division) where he was initially
involved with mainframe-based Computer-Aided Analysis (CAA) and later
assigned the task of acquiring minicomputer-based CAA and Computer-Aided
Design (CAD) capabilities and integrating them. In 1978 that work expanded to
include analysis integration and data management (General Dynamics, Convair
Division). During 1980-81 he examined the commercial engineering and
manufacturing process as a product marketing engineer (Hewlett-Packard, San
Diego Division). In 1982 he defined the requirements for a successful file control
system for the management of CAD and other engineering data (General Dynamics,
Data Systems Division). From 1983 through 1985 he was the project manager for a
corporate-wide CAD/CAM Database Management System, and its
subcontractor (Computer Corporation of America). His most recent assignment was as
the process and information architect for a major enterprise integration and
management project. Since 1976 he has devised better engineering and
manufacturing processes and information systems to reduce product cost and
improve product quality.

Most Recent Testimonials

"Bill has provided an excellent road-map for CAD/CAM integration. He has
made a strong technical contribution in the development and implementation of
various integration projects. … Strengths: technical knowledge & skills,
dedication and loyalty, highly productive and proactive, vision and "big-picture"
perspective, creativity and originality." - KW

"Bill Holmes [is the] chief architect of Convair's CIM Plan. His responsibilities
include identifying faults and weakness in the traditional ways of performing
aerospace product development, devising an improved process that will
overcome the existing problems, and identifying opportunities to apply
computer technology to the new streamlined process. Bill Holmes has been a
leader and one of the most articulate spokesmen for the IMS team's efforts to
devise plans and strategies for establishing the "new Convair". … He has
conceptualized ways of organizing product and program information that hold
the promise of enabling a responsive, efficient, and accurate product
development life cycle at Convair." - RJF

232

Enterprise Integration and Management About the Author

"DEC and GD went through a prolonged period where we could not agree on
an architectural approach. Bill essentially rescued the situation with his insights
and ability to communicate difficult technical concepts. He made numerous
presentations to various levels of people in both companies, and kept
elaborating on the backplane concept until he had sold it throughout the
Program.

"Bill … has an extraordinarily insightful understanding of the engineering end of
the defense business. He is an excellent communicator of difficult concepts.
He readily adapts to new technologies. … We need his brain to be applied to
the problems on the manufacturing side of the business.

"Your memo was just excellent! Your frankness and honesty in packing those
ideas and thoughts are to be admired. I had no idea that such a deeply
philosophical and thoughtful person was lurking behind that friendly mask!" -
PCM

"Well said, timely I might add, too!!! May your wonderful mind continue to chart
a course within the nether world of CIM processes which no organization has
ever gone before!!!" - JCM

233

